亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, their primary focus has been on the common representations of time series data. This concentration might inadvertently lead to the oversight of valuable domain-specific information originating from different source domains. To bridge this gap, we introduce POND, a novel prompt-based deep learning model designed explicitly for multi-source time series domain adaptation. POND is tailored to address significant challenges, notably: 1) The unavailability of a quantitative relationship between meta-data information and time series distributions, and 2) The dearth of exploration into extracting domain-specific meta-data information. In this paper, we present an instance-level prompt generator and a fidelity loss mechanism to facilitate the faithful learning of meta-data information. Additionally, we propose a domain discrimination technique to discern domain-specific meta-data information from multiple source domains. Our approach involves a simple yet effective meta-learning algorithm to optimize the objective efficiently. Furthermore, we augment the model's performance by incorporating the Mixture of Expert (MoE) technique. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing five datasets, which demonstrates that our proposed POND model outperforms the state-of-the-art methods by up to $66\%$ on the F1-score.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · UDA · 可約的 · Extensibility · Performer ·
2024 年 2 月 6 日

Recent endeavors have been made to leverage self-supervised depth estimation as guidance in unsupervised domain adaptation (UDA) for semantic segmentation. Prior arts, however, overlook the discrepancy between semantic and depth features, as well as the reliability of feature fusion, thus leading to suboptimal segmentation performance. To address this issue, we propose a novel UDA framework called SMART (croSs doMain semAntic segmentation based on eneRgy esTimation) that utilizes Energy-Based Models (EBMs) to obtain task-adaptive features and achieve reliable feature fusion for semantic segmentation with self-supervised depth estimates. Our framework incorporates two novel components: energy-based feature fusion (EB2F) and energy-based reliable fusion Assessment (RFA) modules. The EB2F module produces task-adaptive semantic and depth features by explicitly measuring and reducing their discrepancy using Hopfield energy for better feature fusion. The RFA module evaluates the reliability of the feature fusion using an energy score to improve the effectiveness of depth guidance. Extensive experiments on two datasets demonstrate that our method achieves significant performance gains over prior works, validating the effectiveness of our energy-based learning approach.

Many current recommender systems mainly focus on the product-to-product recommendations and user-to-product recommendations even during the time of events rather than modeling the typical recommendations for the target event (e.g., festivals, seasonal activities, or social activities) without addressing the multiple aspects of the shopping demands for the target event. Product recommendations for the multiple aspects of the target event are usually generated by human curators who manually identify the aspects and select a list of aspect-related products (i.e., product carousel) for each aspect as recommendations. However, building a recommender system with machine learning is non-trivial due to the lack of both the ground truth of event-related aspects and the aspect-related products. To fill this gap, we define the novel problem as the event-based product carousel recommendations in e-commerce and propose an effective recommender system based on the query-click bipartite graph. We apply the iterative clustering algorithm over the query-click bipartite graph and infer the event-related aspects by the clusters of queries. The aspect-related recommendations are powered by the click-through rate of products regarding each aspect. We show through experiments that this approach effectively mines product carousels for the target event.

Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.

We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate.

Single-domain generalized object detection aims to enhance a model's generalizability to multiple unseen target domains using only data from a single source domain during training. This is a practical yet challenging task as it requires the model to address domain shift without incorporating target domain data into training. In this paper, we propose a novel phrase grounding-based style transfer (PGST) approach for the task. Specifically, we first define textual prompts to describe potential objects for each unseen target domain. Then, we leverage the grounded language-image pre-training (GLIP) model to learn the style of these target domains and achieve style transfer from the source to the target domain. The style-transferred source visual features are semantically rich and could be close to imaginary counterparts in the target domain. Finally, we employ these style-transferred visual features to fine-tune GLIP. By introducing imaginary counterparts, the detector could be effectively generalized to unseen target domains using only a single source domain for training. Extensive experimental results on five diverse weather driving benchmarks demonstrate our proposed approach achieves state-of-the-art performance, even surpassing some domain adaptive methods that incorporate target domain images into the training process.The source codes and pre-trained models will be made available.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.

Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司