The Johnson-Lindenstrauss (JL) Lemma introduced the concept of dimension reduction via a random linear map, which has become a fundamental technique in many computational settings. For a set of $n$ points in $\mathbb{R}^d$ and any fixed $\epsilon>0$, it reduces the dimension $d$ to $O(\log n)$ while preserving, with high probability, all the pairwise Euclidean distances within factor $1+\epsilon$. Perhaps surprisingly, the target dimension can be lower if one only wishes to preserve the optimal value of a certain problem on the pointset, e.g., Euclidean max-cut or $k$-means. However, for some notorious problems, like diameter (aka furthest pair), dimension reduction via the JL map to below $O(\log n)$ does not preserve the optimal value within factor $1+\epsilon$. We propose to focus on another regime, of \emph{moderate dimension reduction}, where a problem's value is preserved within factor $\alpha>1$ using target dimension $\tfrac{\log n}{poly(\alpha)}$. We establish the viability of this approach and show that the famous $k$-center problem is $\alpha$-approximated when reducing to dimension $O(\tfrac{\log n}{\alpha^2}+\log k)$. Along the way, we address the diameter problem via the special case $k=1$. Our result extends to several important variants of $k$-center (with outliers, capacities, or fairness constraints), and the bound improves further with the input's doubling dimension. While our $poly(\alpha)$-factor improvement in the dimension may seem small, it actually has significant implications for streaming algorithms, and easily yields an algorithm for $k$-center in dynamic geometric streams, that achieves $O(\alpha)$-approximation using space $poly(kdn^{1/\alpha^2})$. This is the first algorithm to beat $O(n)$ space in high dimension $d$, as all previous algorithms require space at least $\exp(d)$. Furthermore, it extends to the $k$-center variants mentioned above.
Temporal logics for the specification of information-flow properties are able to express relations between multiple executions of a system. The two most important such logics are HyperLTL and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this expressiveness comes at a price, i.e.\ satisfiability is undecidable for both logics. In this paper we settle the exact complexity of these problems, showing that both are in fact highly undecidable: we prove that HyperLTL satisfiability is $\Sigma_1^1$-complete and HyperCTL* satisfiability is $\Sigma_1^2$-complete. These are significant increases over the previously known lower bounds and the first upper bounds. To prove $\Sigma_1^2$-membership for HyperCTL*, we prove that every satisfiable HyperCTL* sentence has a model that is equinumerous to the continuum, the first upper bound of this kind. We also prove this bound to be tight. Furthermore, we prove that both countable and finitely-branching satisfiability for HyperCTL* are as hard as truth in second-order arithmetic, i.e.\ still highly undecidable. Finally, we show that the membership problem for every level of the HyperLTL quantifier alternation hierarchy is $\Pi_1^1$-complete.
Neuro-Symbolic (NeSy) AI could be regarded as an analogy to human dual-process cognition, modeling the intuitive System 1 with neural networks and the algorithmic System 2 with symbolic reasoning. However, for complex learning targets, NeSy systems often generate outputs inconsistent with domain knowledge and it is challenging to rectify them. Inspired by the human Cognitive Reflection, which promptly detects errors in our intuitive response and revises them by invoking the System 2 reasoning, we propose to improve NeSy systems by introducing Abductive Reflection (ABL-Refl) based on the Abductive Learning (ABL) framework. ABL-Refl leverages domain knowledge to abduce a reflection vector during training, which can then flag potential errors in the neural network outputs and invoke abduction to rectify them and generate consistent outputs during inference. ABL-Refl is highly efficient in contrast to previous ABL implementations. Experiments show that ABL-Refl outperforms state-of-the-art NeSy methods, achieving excellent accuracy with fewer training resources and enhanced efficiency.
Blind estimation of intersymbol interference channels based on the Baum-Welch (BW) algorithm, a specific implementation of the expectation-maximization (EM) algorithm for training hidden Markov models, is robust and does not require labeled data. However, it is known for its extensive computation cost, slow convergence, and frequently converges to a local maximum. In this paper, we modified the trellis structure of the BW algorithm by associating the channel parameters with two consecutive states. This modification enables us to reduce the number of required states by half while maintaining the same performance. Moreover, to improve the convergence rate and the estimation performance, we construct a joint turbo-BW-equalization system by exploiting the extrinsic information produced by the turbo decoder to refine the BW-based estimator at each EM iteration. Our experiments demonstrate that the joint system achieves convergence in just 4 EM iterations, which is 8 iterations less than a separate system design for a signal-to-noise ratio (SNR) of 6 dB. Additionally, the joint system provides improved estimation accuracy with a mean square error (MSE) of $10^{-4}$. We also identify scenarios where a joint design is not preferable, especially when the channel is noisy (e.g., SNR=2 dB) and the turbo decoder is unable to provide reliable extrinsic information for a BW-based estimator.
We consider the problem of finding an independent set of maximum weight simultaneously contained in $k$ matroids over a common ground set. This $k$-matroid intersection problem appears naturally in many contexts, for example in generalizing graph and hypergraph matching problems. In this paper, we provide a $(k+1)/(2 \ln 2)$-approximation algorithm for the weighted $k$-matroid intersection problem. This is the first improvement over the longstanding $(k-1)$-guarantee of Lee, Sviridenko and Vondr\'ak (2009). Along the way, we also give the first improvement over greedy for the more general weighted matroid $k$-parity problem. Our key innovation lies in a randomized reduction in which we solve almost unweighted instances iteratively. This perspective allows us to use insights from the unweighted problem for which Lee, Sviridenko, and Vondr\'ak have designed a $k/2$-approximation algorithm. We analyze this procedure by constructing refined matroid exchanges and leveraging randomness to avoid bad local minima.
Wide-baseline panoramic images are frequently used in applications like VR and simulations to minimize capturing labor costs and storage needs. However, synthesizing novel views from these panoramic images in real time remains a significant challenge, especially due to panoramic imagery's high resolution and inherent distortions. Although existing 3D Gaussian splatting (3DGS) methods can produce photo-realistic views under narrow baselines, they often overfit the training views when dealing with wide-baseline panoramic images due to the difficulty in learning precise geometry from sparse 360$^{\circ}$ views. This paper presents \textit{Splatter-360}, a novel end-to-end generalizable 3DGS framework designed to handle wide-baseline panoramic images. Unlike previous approaches, \textit{Splatter-360} performs multi-view matching directly in the spherical domain by constructing a spherical cost volume through a spherical sweep algorithm, enhancing the network's depth perception and geometry estimation. Additionally, we introduce a 3D-aware bi-projection encoder to mitigate the distortions inherent in panoramic images and integrate cross-view attention to improve feature interactions across multiple viewpoints. This enables robust 3D-aware feature representations and real-time rendering capabilities. Experimental results on the HM3D~\cite{hm3d} and Replica~\cite{replica} demonstrate that \textit{Splatter-360} significantly outperforms state-of-the-art NeRF and 3DGS methods (e.g., PanoGRF, MVSplat, DepthSplat, and HiSplat) in both synthesis quality and generalization performance for wide-baseline panoramic images. Code and trained models are available at \url{//3d-aigc.github.io/Splatter-360/}.
The fairness of clustering algorithms has gained widespread attention across various areas, including machine learning, In this paper, we study fair $k$-means clustering in Euclidean space. Given a dataset comprising several groups, the fairness constraint requires that each cluster should contain a proportion of points from each group within specified lower and upper bounds. Due to these fairness constraints, determining the optimal locations of $k$ centers is a quite challenging task. We propose a novel ``Relax and Merge'' framework that returns a $(1+4\rho + O(\epsilon))$-approximate solution, where $\rho$ is the approximate ratio of an off-the-shelf vanilla $k$-means algorithm and $O(\epsilon)$ can be an arbitrarily small positive number. If equipped with a PTAS of $k$-means, our solution can achieve an approximation ratio of $(5+O(\epsilon))$ with only a slight violation of the fairness constraints, which improves the current state-of-the-art approximation guarantee. Furthermore, using our framework, we can also obtain a $(1+4\rho +O(\epsilon))$-approximate solution for the $k$-sparse Wasserstein Barycenter problem, which is a fundamental optimization problem in the field of optimal transport, and a $(2+6\rho)$-approximate solution for the strictly fair $k$-means clustering with no violation, both of which are better than the current state-of-the-art methods. In addition, the empirical results demonstrate that our proposed algorithm can significantly outperform baseline approaches in terms of clustering cost.
We study integration and $L^2$-approximation in the worst-case setting for deterministic linear algorithms based on function evaluations. The underlying function space is a reproducing kernel Hilbert space with a Gaussian kernel of tensor product form. In the infinite-variate case, for both computational problems, we establish matching upper and lower bounds for the polynomial convergence rate of the $n$-th minimal error. In the multivariate case, we improve several tractability results for the integration problem. For the proofs, we establish the following transference result together with an explicit construction: Each of the computational problems on a space with a Gaussian kernel is equivalent on the level of algorithms to the same problem on a Hermite space with suitable parameters.
Recent advances in large language models (LLMs) have shown significant promise, yet their evaluation raises concerns, particularly regarding data contamination due to the lack of access to proprietary training data. To address this issue, we present C$^2$LEVA, a comprehensive bilingual benchmark featuring systematic contamination prevention. C$^2$LEVA firstly offers a holistic evaluation encompassing 22 tasks, each targeting a specific application or ability of LLMs, and secondly a trustworthy assessment due to our contamination-free tasks, ensured by a systematic contamination prevention strategy that fully automates test data renewal and enforces data protection during benchmark data release. Our large-scale evaluation of 15 open-source and proprietary models demonstrates the effectiveness of C$^2$LEVA.
Recently, many studies have been conducted to enhance the zero-shot generalization ability of vision-language models (e.g., CLIP) by addressing the semantic misalignment between image and text embeddings in downstream tasks. Although many efforts have been made, existing methods barely consider the fact that a class of images can be described by notably different textual concepts due to well-known lexical variation in natural language processing, which heavily affects the zero-shot generalization of CLIP. Therefore, this paper proposes a \textbf{S}ynonymous \textbf{S}emantic \textbf{S}pace ($S^3$) for each image class, rather than relying on a single textual concept, achieving more stable semantic alignment and improving the zero-shot generalization of CLIP. Specifically, our $S^3$ method first generates several synonymous concepts based on the label of each class by using large language models, and constructs a continuous yet compact synonymous semantic space based on the Vietoris-Rips complex of the generated synonymous concepts. Furthermore, we explore the effect of several point-to-space metrics on our $S^3$, while presenting a point-to-local-center metric to compute similarity between image embeddings and the synonymous semantic space of each class, accomplishing effective zero-shot predictions. Extensive experiments are conducted across 17 benchmarks, including fine-grained zero-shot classification, natural distribution zero-shot classification, and open-vocabulary segmentation, and the results show that our $S^3$ outperforms state-of-the-art methods.
The $k$-sparse parity problem is a classical problem in computational complexity and algorithmic theory, serving as a key benchmark for understanding computational classes. In this paper, we solve the $k$-sparse parity problem with sign stochastic gradient descent, a variant of stochastic gradient descent (SGD) on two-layer fully-connected neural networks. We demonstrate that this approach can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube ($k\leq O(\sqrt{d})$) with a sample complexity of $\tilde{O}(d^{k-1})$ using $2^{\Theta(k)}$ neurons, matching the established $\Omega(d^{k})$ lower bounds of Statistical Query (SQ) models. Our theoretical analysis begins by constructing a good neural network capable of correctly solving the $k$-parity problem. We then demonstrate how a trained neural network with sign SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors. To the best of our knowledge, this is the first result that matches the SQ lower bound for solving $k$-sparse parity problem using gradient-based methods.