亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Low-light image enhancement (LLIE) restores the color and brightness of underexposed images. Supervised methods suffer from high costs in collecting low/normal-light image pairs. Unsupervised methods invest substantial effort in crafting complex loss functions. We address these two challenges through the proposed TroubleMaker Learning (TML) strategy, which employs normal-light images as inputs for training. TML is simple: we first dim the input and then increase its brightness. TML is based on two core components. First, the troublemaker model (TM) constructs pseudo low-light images from normal images to relieve the cost of pairwise data. Second, the predicting model (PM) enhances the brightness of pseudo low-light images. Additionally, we incorporate an enhancing model (EM) to further improve the visual performance of PM outputs. Moreover, in LLIE tasks, characterizing global element correlations is important because more information on the same object can be captured. CNN cannot achieve this well, and self-attention has high time complexity. Accordingly, we propose Global Dynamic Convolution (GDC) with O(n) time complexity, which essentially imitates the partial calculation process of self-attention to formulate elementwise correlations. Based on the GDC module, we build the UGDC model. Extensive quantitative and qualitative experiments demonstrate that UGDC trained with TML can achieve competitive performance against state-of-the-art approaches on public datasets. The code is available at //github.com/Rainbowman0/TML_LLIE.

相關內容

Text-to-image diffusion models suffer from the risk of generating outdated, copyrighted, incorrect, and biased content. While previous methods have mitigated the issues on a small scale, it is essential to handle them simultaneously in larger-scale real-world scenarios. We propose a two-stage method, Editing Massive Concepts In Diffusion Models (EMCID). The first stage performs memory optimization for each individual concept with dual self-distillation from text alignment loss and diffusion noise prediction loss. The second stage conducts massive concept editing with multi-layer, closed form model editing. We further propose a comprehensive benchmark, named ImageNet Concept Editing Benchmark (ICEB), for evaluating massive concept editing for T2I models with two subtasks, free-form prompts, massive concept categories, and extensive evaluation metrics. Extensive experiments conducted on our proposed benchmark and previous benchmarks demonstrate the superior scalability of EMCID for editing up to 1,000 concepts, providing a practical approach for fast adjustment and re-deployment of T2I diffusion models in real-world applications.

Knowledge Distillation (KD) is a predominant approach for BERT compression. Previous KD-based methods focus on designing extra alignment losses for the student model to mimic the behavior of the teacher model. These methods transfer the knowledge in an indirect way. In this paper, we propose a novel Weight-Inherited Distillation (WID), which directly transfers knowledge from the teacher. WID does not require any additional alignment loss and trains a compact student by inheriting the weights, showing a new perspective of knowledge distillation. Specifically, we design the row compactors and column compactors as mappings and then compress the weights via structural re-parameterization. Experimental results on the GLUE and SQuAD benchmarks show that WID outperforms previous state-of-the-art KD-based baselines. Further analysis indicates that WID can also learn the attention patterns from the teacher model without any alignment loss on attention distributions. The code is available at //github.com/wutaiqiang/WID-NAACL2024.

Object detection in remote sensing images (RSIs) often suffers from several increasing challenges, including the large variation in object scales and the diverse-ranging context. Prior methods tried to address these challenges by expanding the spatial receptive field of the backbone, either through large-kernel convolution or dilated convolution. However, the former typically introduces considerable background noise, while the latter risks generating overly sparse feature representations. In this paper, we introduce the Poly Kernel Inception Network (PKINet) to handle the above challenges. PKINet employs multi-scale convolution kernels without dilation to extract object features of varying scales and capture local context. In addition, a Context Anchor Attention (CAA) module is introduced in parallel to capture long-range contextual information. These two components work jointly to advance the performance of PKINet on four challenging remote sensing detection benchmarks, namely DOTA-v1.0, DOTA-v1.5, HRSC2016, and DIOR-R.

We introduce the Pyramid Diffusion Model (PDM), a novel architecture designed for ultra-high-resolution image synthesis. PDM utilizes a pyramid latent representation, providing a broader design space that enables more flexible, structured, and efficient perceptual compression which enable AutoEncoder and Network of Diffusion to equip branches and deeper layers. To enhance PDM's capabilities for generative tasks, we propose the integration of Spatial-Channel Attention and Res-Skip Connection, along with the utilization of Spectral Norm and Decreasing Dropout Strategy for the Diffusion Network and AutoEncoder. In summary, PDM achieves the synthesis of images with a 2K resolution for the first time, demonstrated on two new datasets comprising images of sizes 2048x2048 pixels and 2048x1024 pixels respectively. We believe that this work offers an alternative approach to designing scalable image generative models, while also providing incremental reinforcement for existing frameworks.

With diverse presentation forgery methods emerging continually, detecting the authenticity of images has drawn growing attention. Although existing methods have achieved impressive accuracy in training dataset detection, they still perform poorly in the unseen domain and suffer from forgery of irrelevant information such as background and identity, affecting generalizability. To solve this problem, we proposed a novel framework Selective Domain-Invariant Feature (SDIF), which reduces the sensitivity to face forgery by fusing content features and styles. Specifically, we first use a Farthest-Point Sampling (FPS) training strategy to construct a task-relevant style sample representation space for fusing with content features. Then, we propose a dynamic feature extraction module to generate features with diverse styles to improve the performance and effectiveness of the feature extractor. Finally, a domain separation strategy is used to retain domain-related features to help distinguish between real and fake faces. Both qualitative and quantitative results in existing benchmarks and proposals demonstrate the effectiveness of our approach.

No-Reference Image Quality Assessment (NR-IQA) focuses on designing methods to measure image quality in alignment with human perception when a high-quality reference image is unavailable. The reliance on annotated Mean Opinion Scores (MOS) in the majority of state-of-the-art NR-IQA approaches limits their scalability and broader applicability to real-world scenarios. To overcome this limitation, we propose QualiCLIP (Quality-aware CLIP), a CLIP-based self-supervised opinion-unaware method that does not require labeled MOS. In particular, we introduce a quality-aware image-text alignment strategy to make CLIP generate representations that correlate with the inherent quality of the images. Starting from pristine images, we synthetically degrade them with increasing levels of intensity. Then, we train CLIP to rank these degraded images based on their similarity to quality-related antonym text prompts, while guaranteeing consistent representations for images with comparable quality. Our method achieves state-of-the-art performance on several datasets with authentic distortions. Moreover, despite not requiring MOS, QualiCLIP outperforms supervised methods when their training dataset differs from the testing one, thus proving to be more suitable for real-world scenarios. Furthermore, our approach demonstrates greater robustness and improved explainability than competing methods. The code and the model are publicly available at //github.com/miccunifi/QualiCLIP.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司