We define the notion of $k$-safe infinitary series over idempotent ordered totally generalized product $\omega $-valuation monoids that satisfy specific properties. For each element $k$ of the underlying structure (different from the neutral elements of the additive, and the multiplicative operation) we determine two syntactic fragments of the weighted $LTL$ with the property that the semantics of the formulas in these fragments are $k$ -safe infinitary series. For specific idempotent ordered totally generalized product $\omega $-valuation monoids we provide algorithms that given a weighted B\"{u}chi automaton and a weighted $LTL$ formula in these fragments, decide whether the behavior of the automaton coincides with the semantics of the formula.
We study Whitney-type estimates for approximation of convex functions in the uniform norm on various convex multivariate domains while paying a particular attention to the dependence of the involved constants on the dimension and the geometry of the domain.
We study the high-order local discontinuous Galerkin (LDG) method for the $p$-Laplace equation. We reformulate our spatial discretization as an equivalent convex minimization problem and use a preconditioned gradient descent method as the nonlinear solver. For the first time, a weighted preconditioner that provides $hk$-independent convergence is applied in the LDG setting. For polynomial order $k \geqslant 1$, we rigorously establish the solvability of our scheme and provide a priori error estimates in a mesh-dependent energy norm. Our error estimates are under a different and non-equivalent distance from existing LDG results. For arbitrarily high-order polynomials under the assumption that the exact solution has enough regularity, the error estimates demonstrate the potential for high-order accuracy. Our numerical results exhibit the desired convergence speed facilitated by the preconditioner, and we observe best convergence rates in gradient variables in alignment with linear LDG, and optimal rates in the primal variable when $1 < p \leqslant 2$.
In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field $\mathbb{F}_q$ with $q$ elements. Given a finite separable extension $\mathcal{M}/\mathcal{F}$ of function fields and an iso-dual AG-code $\mathcal{C}$ defined over $\mathcal{F}$, we provide a general method to lift the code $\mathcal{C}$ to another iso-dual AG-code $\tilde{\mathcal{C}}$ defined over $\mathcal{M}$ under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian $p$-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the $GGS$ function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.
Simply-verifiable mathematical conditions for existence, uniqueness and explicit analytical computation of minimal adversarial paths (MAP) and minimal adversarial distances (MAD) for (locally) uniquely-invertible classifiers, for generalized linear models (GLM), and for entropic AI (EAI) are formulated and proven. Practical computation of MAP and MAD, their comparison and interpretations for various classes of AI tools (for neuronal networks, boosted random forests, GLM and EAI) are demonstrated on the common synthetic benchmarks: on a double Swiss roll spiral and its extensions, as well as on the two biomedical data problems (for the health insurance claim predictions, and for the heart attack lethality classification). On biomedical applications it is demonstrated how MAP provides unique minimal patient-specific risk-mitigating interventions in the predefined subsets of accessible control variables.
Despite decades of practice, finite-size errors in many widely used electronic structure theories for periodic systems remain poorly understood. For periodic systems using a general Monkhorst-Pack grid, there has been no comprehensive and rigorous analysis of the finite-size error in the Hartree-Fock theory (HF) and the second order M{\o}ller-Plesset perturbation theory (MP2), which are the simplest wavefunction based method, and the simplest post-Hartree-Fock method, respectively. Such calculations can be viewed as a multi-dimensional integral discretized with certain trapezoidal rules. Due to the Coulomb singularity, the integrand has many points of discontinuity in general, and standard error analysis based on the Euler-Maclaurin formula gives overly pessimistic results. The lack of analytic understanding of finite-size errors also impedes the development of effective finite-size correction schemes. We propose a unified analysis to obtain sharp convergence rates of finite-size errors for the periodic HF and MP2 theories. Our main technical advancement is a generalization of the result of [Lyness, 1976] for obtaining sharp convergence rates of the trapezoidal rule for a class of non-smooth integrands. Our result is applicable to three-dimensional bulk systems as well as low dimensional systems (such as nanowires and 2D materials). Our unified analysis also allows us to prove the effectiveness of the Madelung-constant correction to the Fock exchange energy, and the effectiveness of a recently proposed staggered mesh method for periodic MP2 calculations [Xing, Li, Lin, J. Chem. Theory Comput. 2021]. Our analysis connects the effectiveness of the staggered mesh method with integrands with removable singularities, and suggests a new staggered mesh method for reducing finite-size errors of periodic HF calculations.
Alzheimer's Disease and normal aging are both characterized by brain atrophy. The question of whether AD-related brain atrophy represents accelerated aging or a neurodegeneration process distinct from that in normal aging remains unresolved. Moreover, precisely disentangling AD-related brain atrophy from normal aging in a clinical context is complex. In this study, we propose a deformation-based morphometry framework to estimate normal aging and AD-specific atrophy patterns of subjects from morphological MRI scans. We first leverage deep-learning-based methods to create age-dependent templates of cognitively normal (CN) subjects. These templates model the normal aging atrophy patterns in a CN population. Then, we use the learned diffeomorphic registration to estimate the one-year normal aging pattern at the voxel level. We register the testing image to the 60-year-old CN template in the second step. Finally, normal aging and AD-specific scores are estimated by measuring the alignment of this registration with the one-year normal aging pattern. The methodology was developed and evaluated on the OASIS3 dataset with 1,014 T1-weighted MRI scans. Of these, 326 scans were from CN subjects, and 688 scans were from individuals clinically diagnosed with AD at different stages of clinical severity defined by clinical dementia rating (CDR) scores. The results show that ventricles predominantly follow an accelerated normal aging pattern in subjects with AD. In turn, hippocampi and amygdala regions were affected by both normal aging and AD-specific factors. Interestingly, hippocampi and amygdala regions showed more of an accelerated normal aging pattern for subjects during the early clinical stages of the disease, while the AD-specific score increases in later clinical stages. Our code is freely available at //github.com/Fjr9516/DBM_with_DL.
We consider a fourth order, reaction-diffusion type, singularly perturbed boundary value problem, and the regularity of its solution. Specifically, we provide estimates for arbitrary order derivatves, which are explicit in the singular perturbation parameter as well as the differentiation order. Such estimates are needed for the numerical analysis of high order methods, e.g.hp Finite Element Method (FEM).
In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations.
We introduce and analyse a family of hash and predicate functions that are more likely to produce collisions for small reducible configurations of vectors. These may offer practical improvements to lattice sieving for short vectors. In particular, in one asymptotic regime the family exhibits significantly different convergent behaviour than existing hash functions and predicates.
A common approach to evaluating the significance of a collection of $p$-values combines them with a pooling function, in particular when the original data are not available. These pooled $p$-values convert a sample of $p$-values into a single number which behaves like a univariate $p$-value. To clarify discussion of these functions, a telescoping series of alternative hypotheses are introduced that communicate the strength and prevalence of non-null evidence in the $p$-values before general pooling formulae are discussed. A pattern noticed in the UMP pooled $p$-value for a particular alternative motivates the definition and discussion of central and marginal rejection levels at $\alpha$. It is proven that central rejection is always greater than or equal to marginal rejection, motivating a quotient to measure the balance between the two for pooled $p$-values. A combining function based on the $\chi^2_{\kappa}$ quantile transformation is proposed to control this quotient and shown to be robust to mis-specified parameters relative to the UMP. Different powers for different parameter settings motivate a map of plausible alternatives based on where this pooled $p$-value is minimized.