亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.

相關內容

We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable (quantum) oblivious transfer (OT) protocol, mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions...) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely to exist classically as Cryptomania is believed to be different from Minicrypt. In particular, by instantiating our construction using Non-Interactive ZK (NIZK), we provide the first round-optimal (2-message) quantum OT protocol secure in the random oracle model, and round-optimal extensions to string and k-out-of-n OT. At the heart of our construction lies a new method that allows us to prove properties on a received quantum state without revealing (too much) information on it, even in a non-interactive way and/or with statistical guarantees when using an appropriate classical ZK protocol. We can notably prove that a state has been partially measured (with arbitrary constraints on the set of measured qubits), without revealing any additional information on this set. This notion can be seen as an analog of ZK to quantum states, and we expect it to be of independent interest as it extends complexity theory to quantum languages, as illustrated by the two new complexity classes we introduce, ZKstateQIP and ZKstateQMA.

Recent works on neural contextual bandits have achieved compelling performances due to their ability to leverage the strong representation power of neural networks (NNs) for reward prediction. Many applications of contextual bandits involve multiple agents who collaborate without sharing raw observations, thus giving rise to the setting of federated contextual bandits. Existing works on federated contextual bandits rely on linear or kernelized bandits, which may fall short when modeling complex real-world reward functions. So, this paper introduces the federated neural-upper confidence bound (FN-UCB) algorithm. To better exploit the federated setting, FN-UCB adopts a weighted combination of two UCBs: $\text{UCB}^{a}$ allows every agent to additionally use the observations from the other agents to accelerate exploration (without sharing raw observations), while $\text{UCB}^{b}$ uses an NN with aggregated parameters for reward prediction in a similar way to federated averaging for supervised learning. Notably, the weight between the two UCBs required by our theoretical analysis is amenable to an interesting interpretation, which emphasizes $\text{UCB}^{a}$ initially for accelerated exploration and relies more on $\text{UCB}^{b}$ later after enough observations have been collected to train the NNs for accurate reward prediction (i.e., reliable exploitation). We prove sub-linear upper bounds on both the cumulative regret and the number of communication rounds of FN-UCB, and empirically demonstrate its competitive performance.

Single-shot auctions are commonly used as a means to sell goods, for example when selling ad space or allocating radio frequencies, however devising mechanisms for auctions with multiple bidders and multiple items can be complicated. It has been shown that neural networks can be used to approximate optimal mechanisms while satisfying the constraints that an auction be strategyproof and individually rational. We show that despite such auctions maximizing revenue, they do so at the cost of revealing private bidder information. While randomness is often used to build in privacy, in this context it comes with complications if done without care. Specifically, it can violate rationality and feasibility constraints, fundamentally change the incentive structure of the mechanism, and/or harm top-level metrics such as revenue and social welfare. We propose a method that employs stochasticity to improve privacy while meeting the requirements for auction mechanisms with only a modest sacrifice in revenue. We analyze the cost to the auction house that comes with introducing varying degrees of privacy in common auction settings. Our results show that despite current neural auctions' ability to approximate optimal mechanisms, the resulting vulnerability that comes with relying on neural networks must be accounted for.

In the pooled data problem we are given $n$ agents with hidden state bits, either $0$ or $1$. The hidden states are unknown and can be seen as the underlying ground truth $\sigma$. To uncover that ground truth, we are given a querying method that queries multiple agents at a time. Each query reports the sum of the states of the queried agents. Our goal is to learn the hidden state bits using as few queries as possible. So far, most literature deals with exact reconstruction of all hidden state bits. We study a more relaxed variant in which we allow a small fraction of agents to be classified incorrectly. This becomes particularly relevant in the noisy variant of the pooled data problem where the queries' results are subject to random noise. In this setting, we provide a doubly regular test design that assigns agents to queries. For this design we analyze an approximate reconstruction algorithm that estimates the hidden bits in a greedy fashion. We give a rigorous analysis of the algorithm's performance, its error probability, and its approximation quality. As a main technical novelty, our analysis is uniform in the degree of noise and the sparsity of $\sigma$. Finally, simulations back up our theoretical findings and provide strong empirical evidence that our algorithm works well for realistic sample sizes.

We study the problem of planning restless multi-armed bandits (RMABs) with multiple actions. This is a popular model for multi-agent systems with applications like multi-channel communication, monitoring and machine maintenance tasks, and healthcare. Whittle index policies, which are based on Lagrangian relaxations, are widely used in these settings due to their simplicity and near-optimality under certain conditions. In this work, we first show that Whittle index policies can fail in simple and practically relevant RMAB settings, even when the RMABs are indexable. We discuss why the optimality guarantees fail and why asymptotic optimality may not translate well to practically relevant planning horizons. We then propose an alternate planning algorithm based on the mean-field method, which can provably and efficiently obtain near-optimal policies with a large number of arms, without the stringent structural assumptions required by the Whittle index policies. This borrows ideas from existing research with some improvements: our approach is hyper-parameter free, and we provide an improved non-asymptotic analysis which has: (a) no requirement for exogenous hyper-parameters and tighter polynomial dependence on known problem parameters; (b) high probability bounds which show that the reward of the policy is reliable; and (c) matching sub-optimality lower bounds for this algorithm with respect to the number of arms, thus demonstrating the tightness of our bounds. Our extensive experimental analysis shows that the mean-field approach matches or outperforms other baselines.

Bandits with Knapsacks (BwK), the generalization of the Multi-Armed Bandits under budget constraints, has received a lot of attention in recent years. It has numerous applications, including dynamic pricing, repeated auctions, etc. Previous work has focused on one of the two extremes: Stochastic BwK where the rewards and consumptions of the resources each round are sampled from an i.i.d. distribution, and Adversarial BwK where these values are picked by an adversary. Achievable guarantees in the two cases exhibit a massive gap: No-regret learning is achievable in Stochastic BwK, but in Adversarial BwK, only competitive ratio style guarantees are achievable, where the competitive ratio depends on the budget. What makes this gap so vast is that in Adversarial BwK the guarantees get worse in the typical case when the budget is more binding. While ``best-of-both-worlds'' type algorithms are known (algorithms that provide the best achievable guarantee in both extreme cases), their guarantees degrade to the adversarial case as soon as the environment is not fully stochastic. Our work aims to bridge this gap, offering guarantees for a workload that is not exactly stochastic but is also not worst-case. We define a condition, Approximately Stationary BwK, that parameterizes how close to stochastic or adversarial an instance is. Based on these parameters, we explore what is the best competitive ratio attainable in BwK. We explore two algorithms that are oblivious to the values of the parameters but guarantee competitive ratios that smoothly transition between the best possible guarantees in the two extreme cases, depending on the values of the parameters. Our guarantees offer great improvement over the adversarial guarantee, especially when the available budget is small. We also prove bounds on the achievable guarantee, showing that our results are approximately tight when the budget is small.

Thompson sampling (TS) for the parametric stochastic multi-armed bandits has been well studied under the one-dimensional parametric models. It is often reported that TS is fairly insensitive to the choice of the prior when it comes to regret bounds. However, this property is not necessarily true when multiparameter models are considered, e.g., a Gaussian model with unknown mean and variance parameters. In this paper, we first extend the regret analysis of TS to the model of uniform distributions with unknown supports. Specifically, we show that a switch of noninformative priors drastically affects the regret in expectation. Through our analysis, the uniform prior is proven to be the optimal choice in terms of the expected regret, while the reference prior and the Jeffreys prior are found to be suboptimal, which is consistent with previous findings in the model of Gaussian distributions. However, the uniform prior is specific to the parameterization of the distributions, meaning that if an agent considers different parameterizations of the same model, the agent with the uniform prior might not always achieve the optimal performance. In light of this limitation, we propose a slightly modified TS-based policy, called TS with Truncation (TS-T), which can achieve the asymptotic optimality for the Gaussian distributions and the uniform distributions by using the reference prior and the Jeffreys prior that are invariant under one-to-one reparameterizations. The pre-processig of the posterior distribution is the key to TS-T, where we add an adaptive truncation procedure on the parameter space of the posterior distributions. Simulation results support our analysis, where TS-T shows the best performance in a finite-time horizon compared to other known optimal policies, while TS with the invariant priors performs poorly.

In this paper, we propose new algorithms for evacuation problems defined on dynamic flow networks. A dynamic flow network is a directed graph in which source nodes are given supplies (i.e., the number of evacuees) and a single sink node is given a demand (i.e., the maximum number of acceptable evacuees). The evacuation problem seeks a dynamic flow that sends all supplies from sources to the sink such that its demand is satisfied in the minimum feasible time horizon. For this problem, the current best algorithms are developed by Schl\"oter (2018) and Kamiyama (2019), which run in strongly polynomial time but with highorder polynomial time complexity because they use submodular function minimization as a subroutine. In this paper, we propose new algorithms that do not explicitly execute submodular function minimization, and we prove that they are faster than those by Schl\"oter (2018) and Kamiyama (2019) when an input network is restricted such that the sink has a small in-degree and every edge has the same capacity.

Multi-arm bandits are gaining popularity as they enable real-world sequential decision-making across application areas, including clinical trials, recommender systems, and online decision-making. Consequently, there is an increased desire to use the available adaptively collected datasets to distinguish whether one arm was more effective than the other, e.g., which product or treatment was more effective. Unfortunately, existing tools fail to provide valid inference when data is collected adaptively or require many untestable and technical assumptions, e.g., stationarity, iid rewards, bounded random variables, etc. Our paper introduces the design-based approach to inference for multi-arm bandits, where we condition the full set of potential outcomes and perform inference on the obtained sample. Our paper constructs valid confidence intervals for both the reward mean of any arm and the mean reward difference between any arms in an assumption-light manner, allowing the rewards to be arbitrarily distributed, non-iid, and from non-stationary distributions. In addition to confidence intervals, we also provide valid design-based confidence sequences, sequences of confidence intervals that have uniform type-1 error guarantees over time. Confidence sequences allow the agent to perform a hypothesis test as the data arrives sequentially and stop the experiment as soon as the agent is satisfied with the inference, e.g., the mean reward of an arm is statistically significantly higher than a desired threshold.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司