In this paper, we investigate the performance of reconfigurable intelligent surface (RIS)-aided spatial shift keying (SSK) wireless communication systems in the presence of imperfect channel state information (CSI). Specifically, we analyze the average bit error probability (ABEP) of two RIS-SSK systems respectively based on intelligent reflection and blind reflection of RIS. For the intelligent RIS-SSK scheme, we first derive the conditional pairwise error probability of the composite channel through maximum likelihood (ML) detection. Subsequently, we derive the probability density function of the combined channel. Due to the intricacies of the composite channel formulation, an exact closed-form ABEP expression is unattainable through direct derivation. To this end, we resort to employing the Gaussian-Chebyshev quadrature method to estimate the results. In addition, we employ the Q-function approximation to derive the non-exact closed-form expression when CSI imperfections are present. For the blind RIS-SSK scheme, we derive both closed-form ABEP expression and asymptotic ABEP expression with imperfect CSI by adopting the ML detector. To offer deeper insights, we explore the impact of discrete reflection phase shifts on the performance of the RIS-SSK system. Lastly, we extensively validate all the analytical derivations using Monte Carlo simulations.
In this paper, we establish a benchmark named HalluQA (Chinese Hallucination Question-Answering) to measure the hallucination phenomenon in Chinese large language models. HalluQA contains 450 meticulously designed adversarial questions, spanning multiple domains, and takes into account Chinese historical culture, customs, and social phenomena. During the construction of HalluQA, we consider two types of hallucinations: imitative falsehoods and factual errors, and we construct adversarial samples based on GLM-130B and ChatGPT. For evaluation, we design an automated evaluation method using GPT-4 to judge whether a model output is hallucinated. We conduct extensive experiments on 24 large language models, including ERNIE-Bot, Baichuan2, ChatGLM, Qwen, SparkDesk and etc. Out of the 24 models, 18 achieved non-hallucination rates lower than 50%. This indicates that HalluQA is highly challenging. We analyze the primary types of hallucinations in different types of models and their causes. Additionally, we discuss which types of hallucinations should be prioritized for different types of models.
In this paper, we describe a spoken Arabic dialect identification (ADI) model for Arabic that consistently outperforms previously published results on two benchmark datasets: ADI-5 and ADI-17. We explore two architectural variations: ResNet and ECAPA-TDNN, coupled with two types of acoustic features: MFCCs and features exratected from the pre-trained self-supervised model UniSpeech-SAT Large, as well as a fusion of all four variants. We find that individually, ECAPA-TDNN network outperforms ResNet, and models with UniSpeech-SAT features outperform models with MFCCs by a large margin. Furthermore, a fusion of all four variants consistently outperforms individual models. Our best models outperform previously reported results on both datasets, with accuracies of 84.7% and 96.9% on ADI-5 and ADI-17, respectively.
This paper introduces a dynamic minimum variance portfolio (MVP) model using nonlinear volatility dynamic models, based on high-frequency financial data. Specifically, we impose an autoregressive dynamic structure on MVP processes, which helps capture the MVP dynamics directly. To evaluate the dynamic MVP model, we estimate the inverse volatility matrix using the constrained $\ell_1$-minimization for inverse matrix estimation (CLIME) and calculate daily realized non-normalized MVP weights. Based on the realized non-normalized MVP weight estimator, we propose the dynamic MVP model, which we call the dynamic realized minimum variance portfolio (DR-MVP) model. To estimate a large number of parameters, we employ the least absolute shrinkage and selection operator (LASSO) and predict the future MVP and establish its asymptotic properties. Using high-frequency trading data, we apply the proposed method to MVP prediction.
Topic segmentation is critical for obtaining structured long documents and improving downstream tasks like information retrieval. Due to its ability of automatically exploring clues of topic shift from a large amount of labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship of semantic coherence and topic segmentation underexplored. Therefore, this paper enhances the supervised model's ability to capture coherence from both structure and similarity perspectives to further improve the topic segmentation performance, including the Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations of adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at the topic and sentence levels. In addition, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher semantic similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improves $F_{1}$ of old SOTA by 3.42 (73.74 -> 77.16) and reduces $P_{k}$ by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average reduction of 0.83 points on $P_{k}$ on WikiSection. The average $P_{k}$ drop of 2.82 points on the two out-of-domain datasets also illustrates the robustness of our approach
The burgeoning generative artificial intelligence technology offers novel insights into the development of semantic communication (SemCom) frameworks. These frameworks hold the potential to address the challenges associated with the black-box nature inherent in existing end-to-end training manner for the existing SemCom framework, as well as deterioration of the user experience caused by the inevitable error floor in deep learning-based semantic communication. In this paper, we focus on the widespread remote monitoring scenario, and propose a semantic change driven generative SemCom framework. Therein, the semantic encoder and semantic decoder can be optimized independently. Specifically, we develop a modular semantic encoder with value of information based semantic sampling function. In addition, we propose a conditional denoising diffusion probabilistic mode-assisted semantic decoder that relies on received semantic information from the source, namely, the semantic map, and the local static scene information to remotely regenerate scenes. Moreover, we demonstrate the effectiveness of the proposed semantic encoder and decoder as well as the considerable potential in reducing energy consumption through simulation. The code is available at //github.com/wty2011jl/SCDGSC.git
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.