We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.
We propose a local modification of the standard subdiffusion model by introducing the initial Fickian diffusion, which results in a multiscale diffusion model. The developed model resolves the incompatibility between the nonlocal operators in subdiffusion and the local initial conditions and thus eliminates the initial singularity of the solutions of the subdiffusion, while retaining its heavy tail behavior away from the initial time. The well-posedness of the model and high-order regularity estimates of its solutions are analyzed by resolvent estimates, based on which the numerical discretization and analysis are performed. Numerical experiments are carried out to substantiate the theoretical findings.
This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that are directly induced by the measurement points. Thus, they may scale unfavorably with the number of evaluation points, which can result in computational inefficiency. To address this issue, we propose an algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness. However, the approach can be generalized to more complicated two- and three-dimensional problems with appropriate modifications.
We consider time-harmonic scalar transmission problems between dielectric and dispersive materials with generalized Lorentz frequency laws. For certain frequency ranges such equations involve a sign-change in their principle part. Due to the resulting loss of coercivity properties, the numerical simulation of such problems is demanding. Furthermore, the related eigenvalue problems are nonlinear and give rise to additional challenges. We present a new finite element method for both of these types of problems, which is based on a weakly coercive reformulation of the PDE. The new scheme can handle $C^{1,1}$-interfaces consisting piecewise of elementary geometries. Neglecting quadrature errors, the method allows for a straightforward convergence analysis. In our implementation we apply a simple, but nonstandard quadrature rule to achieve negligible quadrature errors. We present computational experiments in 2D and 3D for both source and eigenvalue problems which confirm the stability and convergence of the new scheme.
This manuscript summarizes the outcome of the focus groups at "The f(A)bulous workshop on matrix functions and exponential integrators", held at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany, on 25-27 September 2023. There were three focus groups in total, each with a different theme: knowledge transfer, high-performance and energy-aware computing, and benchmarking. We collect insights, open issues, and perspectives from each focus group, as well as from general discussions throughout the workshop. Our primary aim is to highlight ripe research directions and continue to build on the momentum from a lively meeting.
We derive bounds on the moduli of the eigenvalues of special type of matrix rational functions using the following techniques/methods: (1) the Bauer-Fike theorem on an associated block matrix of the given matrix rational function, (2) by associating a real rational function, along with Rouch$\text{\'e}$ theorem for the matrix rational function and (3) by a numerical radius inequality for a block matrix for the matrix rational function. These bounds are compared when the coefficients are unitary matrices. Numerical examples are given to illustrate the results obtained.
It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.
We study the problem of parameter estimation for large exchangeable interacting particle systems when a sample of discrete observations from a single particle is known. We propose a novel method based on martingale estimating functions constructed by employing the eigenvalues and eigenfunctions of the generator of the mean field limit, where the law of the process is replaced by the (unique) invariant measure of the mean field dynamics. We then prove that our estimator is asymptotically unbiased and asymptotically normal when the number of observations and the number of particles tend to infinity, and we provide a rate of convergence towards the exact value of the parameters. Finally, we present several numerical experiments which show the accuracy of our estimator and corroborate our theoretical findings, even in the case the mean field dynamics exhibit more than one steady states.
A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.
This paper aims to front with dimensionality reduction in regression setting when the predictors are a mixture of functional variable and high-dimensional vector. A flexible model, combining both sparse linear ideas together with semiparametrics, is proposed. A wide scope of asymptotic results is provided: this covers as well rates of convergence of the estimators as asymptotic behaviour of the variable selection procedure. Practical issues are analysed through finite sample simulated experiments while an application to Tecator's data illustrates the usefulness of our methodology.
In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.