Recently, neural networks have shown impressive progress across diverse fields, with speech processing being no exception. However, recent breakthroughs in this area require extensive offline training using large datasets and tremendous computing resources. Unfortunately, these models struggle to retain their previously acquired knowledge when learning new tasks continually, and retraining from scratch is almost always impractical. In this paper, we investigate the problem of learning sequence-to-sequence models for spoken language understanding in a class-incremental learning (CIL) setting and we propose COCONUT, a CIL method that relies on the combination of experience replay and contrastive learning. Through a modified version of the standard supervised contrastive loss applied only to the rehearsal samples, COCONUT preserves the learned representations by pulling closer samples from the same class and pushing away the others. Moreover, we leverage a multimodal contrastive loss that helps the model learn more discriminative representations of the new data by aligning audio and text features. We also investigate different contrastive designs to combine the strengths of the contrastive loss with teacher-student architectures used for distillation. Experiments on two established SLU datasets reveal the effectiveness of our proposed approach and significant improvements over the baselines. We also show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
Understanding degraded speech is demanding, requiring increased listening effort (LE). Evaluating processed and unprocessed speech with respect to LE can objectively indicate if speech enhancement systems benefit listeners. However, existing methods for measuring LE are complex and not widely applicable. In this study, we propose a simple method to evaluate speech intelligibility and LE simultaneously without additional strain on subjects or operators. We assess this method using results from two independent studies in Norway and Denmark, testing 76 (50+26) subjects across 9 (6+3) processing conditions. Despite differences in evaluation setups, subject recruitment, and processing systems, trends are strikingly similar, demonstrating the proposed method's robustness and ease of implementation into existing practices.
On the one hand, there has been considerable progress on neural network verification in recent years, which makes certifying neural networks a possibility. On the other hand, neural networks in practice are often re-trained over time to cope with new data distribution or for solving different tasks (a.k.a. continual learning). Once re-trained, the verified correctness of the neural network is likely broken, particularly in the presence of the phenomenon known as catastrophic forgetting. In this work, we propose an approach called certified continual learning which improves existing continual learning methods by preserving, as long as possible, the established correctness properties of a verified network. Our approach is evaluated with multiple neural networks and on two different continual learning methods. The results show that our approach is efficient and the trained models preserve their certified correctness and often maintain high utility.
For many rare diseases with no approved preventive interventions, promising interventions exist, yet it has been difficult to conduct a pivotal phase 3 trial that could provide direct evidence demonstrating a beneficial effect on the target disease outcome. When a promising putative surrogate endpoint(s) for the target outcome is available, surrogate-based provisional approval of an intervention may be pursued. We apply the Causal Roadmap rubric to define a surrogate endpoint based provisional approval causal roadmap, which combines observational study data that estimates the relationship between the putative surrogate and the target outcome, with a phase 3 surrogate endpoint study that collects the same data but is very under-powered to assess the treatment effect (TE) on the target outcome. The objective is conservative estimation/inference for the TE with an estimated lower uncertainty bound that allows (through two bias functions) for an imperfect surrogate and imperfect transport of the conditional target outcome risk in the untreated between the observational and phase 3 studies. Two estimators of TE (plug-in, nonparametric efficient one-step) with corresponding inference procedures are developed. Finite-sample performance of the plug-in estimator is evaluated in two simulation studies, with R code provided. The roadmap is illustrated with contemporary Group B Streptococcus vaccine development.
Graph neural networks (GNNs) are the predominant approach for graph-based machine learning. While neural networks have shown great performance at learning useful representations, they are often criticized for their limited high-level reasoning abilities. In this work, we present Graph Reasoning Networks (GRNs), a novel approach to combine the strengths of fixed and learned graph representations and a reasoning module based on a differentiable satisfiability solver. While results on real-world datasets show comparable performance to GNN, experiments on synthetic datasets demonstrate the potential of the newly proposed method.
We introduce liquid-resistance liquid-capacitance neural networks (LRCs), a neural-ODE model which considerably improves the smoothness, accuracy, and biological plausibility of electrical equivalent circuits (EECs), liquid time-constant networks (LTCs), and saturated liquid time-constant networks (STCs), respectively. We also introduce LRC units (LRCUs), as a very efficient and accurate gated RNN-model, which results from solving LRCs with an explicit Euler scheme using just one unfolding. We empirically show and formally prove that the liquid capacitance of LRCs considerably dampens the oscillations of LTCs and STCs, while at the same time dramatically increasing accuracy even for cheap solvers. We experimentally demonstrate that LRCs are a highly competitive alternative to popular neural ODEs and gated RNNs in terms of accuracy, efficiency, and interpretability, on classic time-series benchmarks and a complex autonomous-driving lane-keeping task.
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.