Given a spanning tree $T$ of a planar graph $G$, the co-tree of $T$ is the spanning tree of the dual graph $G^*$ with edge set $(E(G)-E(T))^*$. Gr\"unbaum conjectured in 1970 that every planar 3-connected graph $G$ contains a spanning tree $T$ such that both $T$ and its co-tree have maximum degree at most 3. While Gr\"unbaum's conjecture remains open, Biedl proved that there is a spanning tree $T$ such that $T$ and its co-tree have maximum degree at most 5. By using new structural insights into Schnyder woods, we prove that there is a spanning tree $T$ such that $T$ and its co-tree have maximum degree at most 4.
Consider a matroid where all elements are labeled with an element in $\mathbb{Z}$. We are interested in finding a base where the sum of the labels is congruent to $g \pmod m$. We show that this problem can be solved in $\tilde{O}(2^{4m} n r^{5/6})$ time for a matroid with $n$ elements and rank $r$, when $m$ is either the product of two primes or a prime power. The algorithm can be generalized to all moduli and, in fact, to all abelian groups if a classic additive combinatorics conjecture by Schrijver and Seymour holds true. We also discuss the optimization version of the problem.
Given a real inner product space $V$ and a group $G$ of linear isometries, we construct a family of $G$-invariant real-valued functions on $V$ that we call coorbit filter banks, which unify previous notions of max filter banks and finite coorbit filter banks. When $V=\mathbb R^d$ and $G$ is compact, we establish that a suitable coorbit filter bank is injective and locally lower Lipschitz in the quotient metric at orbits of maximal dimension. Furthermore, when the orbit space $\mathbb S^{d-1}/G$ is a Riemannian orbifold, we show that a suitable coorbit filter bank is bi-Lipschitz in the quotient metric.
We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log n)$.
We revisit a standard polygon containment problem: given a convex $k$-gon $P$ and a convex $n$-gon $Q$ in the plane, find a placement of $P$ inside $Q$ under translation and rotation (if it exists), or more generally, find the largest copy of $P$ inside $Q$ under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir (1998) all required $\Omega(n^2)$ time, even in the simplest $k=3$ case. We present a significantly faster new algorithm for $k=3$ achieving $O(n$polylog $n)$ running time. Moreover, we extend the result for general $k$, achieving $O(k^{O(1/\varepsilon)}n^{1+\varepsilon})$ running time for any $\varepsilon>0$. Along the way, we also prove a new $O(k^{O(1)}n$polylog $n)$ bound on the number of similar copies of $P$ inside $Q$ that have 4 vertices of $P$ in contact with the boundary of $Q$ (assuming general position input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).
A $\textit{resolving set}$ $R$ in a graph $G$ is a set of vertices such that every vertex of $G$ is uniquely identified by its distances to the vertices of $R$. Introduced in the 1970s, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the $\textit{temporal distance}$ from $u$ to $v$ is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving $u$ reaches $v$, i.e., the first time-step at which $v$ could receive a message broadcast from $u$. A $\textit{temporal resolving set}$ of a temporal graph $\mathcal{G}$ is a subset $R$ of its vertices such that every vertex of $\mathcal{G}$ is uniquely identified by its temporal distances from vertices of $R$. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.
We define and investigate the Fr\'{e}chet edit distance problem. Given two polygonal curves $\pi$ and $\sigma$ and a threshhold value $\delta>0$, we seek the minimum number of edits to $\sigma$ such that the Fr\'{e}chet distance between the edited $\sigma$ and $\pi$ is at most $\delta$. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fr\'{e}chet edit distance variants, as well as hardness results for weak Fr\'{e}chet edit distance variants.
We study the $k$-th nearest neighbor distance function from a finite point-set in $\mathbb{R}^d$. We provide a Morse theoretic framework to analyze the sub-level set topology. In particular, we present a simple combinatorial-geometric characterization for critical points and their indices, along with detailed information about the possible changes in homology at the critical levels. We conclude by computing the expected number of critical points for a homogeneous Poisson process. Our results deliver significant insights and tools for the analysis of persistent homology in order-$k$ Delaunay mosaics, and random $k$-fold coverage.
For an n-vertex directed graph $G = (V,E)$, a $\beta$-\emph{shortcut set} $H$ is a set of additional edges $H \subseteq V \times V$ such that $G \cup H$ has the same transitive closure as $G$, and for every pair $u,v \in V$, there is a $uv$-path in $G \cup H$ with at most $\beta$ edges. A natural generalization of shortcut sets to distances is a $(\beta,\epsilon)$-\emph{hopset} $H \subseteq V \times V$, where the requirement is that $H$ and $G \cup H$ have the same shortest-path distances, and for every $u,v \in V$, there is a $(1+\epsilon)$-approximate shortest path in $G \cup H$ with at most $\beta$ edges. There is a large literature on the tradeoff between the size of a shortcut set / hopset and the value of $\beta$. We highlight the most natural point on this tradeoff: what is the minimum value of $\beta$, such that for any graph $G$, there exists a $\beta$-shortcut set (or a $(\beta,\epsilon)$-hopset) with $O(n)$ edges? Not only is this a natural structural question in its own right, but shortcuts sets / hopsets form the core of many distributed, parallel, and dynamic algorithms for reachability / shortest paths. Until very recently the best known upper bound was a folklore construction showing $\beta = O(n^{1/2})$, but in a breakthrough result Kogan and Parter [SODA 2022] improve this to $\beta = \tilde{O}(n^{1/3})$ for shortcut sets and $\tilde{O}(n^{2/5})$ for hopsets. Our result is to close the gap between shortcut sets and hopsets. That is, we show that for any graph $G$ and any fixed $\epsilon$ there is a $(\tilde{O}(n^{1/3}),\epsilon)$ hopset with $O(n)$ edges. More generally, we achieve a smooth tradeoff between hopset size and $\beta$ which exactly matches the tradeoff of Kogan and Parter for shortcut sets (up to polylog factors). Using a very recent black-box reduction of Kogan and Parter, our new hopset implies improved bounds for approximate distance preservers.
If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is at least $D$. Gowers showed that in a $D$-quasirandom finite group $G$, the maximal size of a product-free set is at most $|G|/D^{1/3}$. This disproved a longstanding conjecture of Babai and S\'os from 1985. For the special unitary group, $G=SU(n)$, Gowers observed that his argument yields an upper bound of $n^{-1/3}$ on the measure of a measurable product-free subset. In this paper, we improve Gowers' upper bound to $\exp(-cn^{1/3})$, where $c>0$ is an absolute constant. In fact, we establish something stronger, namely, product-mixing for measurable subsets of $SU(n)$ with measure at least $\exp(-cn^{1/3})$; for this product-mixing result, the $n^{1/3}$ in the exponent is sharp. Our approach involves introducing novel hypercontractive inequalities, which imply that the non-Abelian Fourier spectrum of the indicator function of a small set concentrates on high-dimensional irreducible representations. Our hypercontractive inequalities are obtained via methods from representation theory, harmonic analysis, random matrix theory and differential geometry. We generalize our hypercontractive inequalities from $SU(n)$ to an arbitrary $D$-quasirandom compact connected Lie group for $D$ at least an absolute constant, thereby extending our results on product-free sets to such groups. We also demonstrate various other applications of our inequalities to geometry (viz., non-Abelian Brunn-Minkowski type inequalities), mixing times, and the theory of growth in compact Lie groups.
Given a set of $n$ sites from $\mathbb{R}^d$, each having some positive weight factor, the Multiplicatively Weighted Voronoi Diagram is a subdivision of space that associates each cell to the site whose weighted Euclidean distance is minimal for all points in the cell. We give novel approximation algorithms that output a cube-based subdivision such that the weighted distance of a point with respect to the associated site is at most $(1+\varepsilon)$ times the minimum weighted distance, for any fixed parameter $\varepsilon \in (0,1)$. The diagram size is $O_d(n \log(1/\varepsilon)/\varepsilon^{d-1})$ and the construction time is within an $O_D(\log(n)/\varepsilon^{(d+5)/2})$-factor of the size bound. We also prove a matching lower bound for the size, showing that the proposed method is the first to achieve \emph{optimal size}, up to $\Theta(1)^d$-factors. In particular, the obscure $\log(1/\varepsilon)$ factor is unavoidable. As a by-product, we obtain a factor $d^{O(d)}$ improvement in size for the unweighted case and $O(d \log(n) + d^2 \log(1/\varepsilon))$ point-location time in the subdivision, improving the known query bound by one $d$-factor. The key ingredients of our approximation algorithms are the study of convex regions that we call cores, an adaptive refinement algorithm to obtain optimal size, and a novel notion of \emph{bisector coresets}, which may be of independent interest. In particular, we show that coresets with $O_d(1/\varepsilon^{(d+3)/2})$ worst-case size can be computed in near-linear time.