亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The integration of generative AI in education is expanding, yet empirical analyses of large-scale, real-world interactions between students and AI systems still remain limited. In this study, we present ChEDDAR, ChatGPT & EFL Learner's Dialogue Dataset As Revising an essay, which is collected from a semester-long longitudinal experiment involving 212 college students enrolled in English as Foreign Langauge (EFL) writing courses. The students were asked to revise their essays through dialogues with ChatGPT. ChEDDAR includes a conversation log, utterance-level essay edit history, self-rated satisfaction, and students' intent, in addition to session-level pre-and-post surveys documenting their objectives and overall experiences. We analyze students' usage patterns and perceptions regarding generative AI with respect to their intent and satisfaction. As a foundational step, we establish baseline results for two pivotal tasks in task-oriented dialogue systems within educational contexts: intent detection and satisfaction estimation. We finally suggest further research to refine the integration of generative AI into education settings, outlining potential scenarios utilizing ChEDDAR. ChEDDAR is publicly available at //github.com/zeunie/ChEDDAR.

相關內容

Varied approaches for aligning language models have been proposed, including supervised fine-tuning, RLHF, and direct optimization methods such as DPO. Although DPO has rapidly gained popularity due to its straightforward training process and competitive results, there is an open question of whether there remain practical advantages of using a discriminator, like a reward model, to evaluate responses. We propose D2PO, discriminator-guided DPO, an approach for the online setting where preferences are being collected throughout learning. As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training. We explore this approach across a set of diverse tasks, including a realistic chat setting, we find that our approach leads to higher-quality outputs compared to DPO with the same data budget, and greater efficiency in terms of preference data requirements. Furthermore, we show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.

Autonomous systems are increasingly implemented using end-to-end learning-based controllers. Such controllers make decisions that are executed on the real system, with images as one of the primary sensing modalities. Deep neural networks form a fundamental building block of such controllers. Unfortunately, the existing neural-network verification tools do not scale to inputs with thousands of dimensions -- especially when the individual inputs (such as pixels) are devoid of clear physical meaning. This paper takes a step towards connecting exhaustive closed-loop verification with high-dimensional controllers. Our key insight is that the behavior of a high-dimensional controller can be approximated with several low-dimensional controllers. To balance the approximation accuracy and verifiability of our low-dimensional controllers, we leverage the latest verification-aware knowledge distillation. Then, we inflate low-dimensional reachability results with statistical approximation errors, yielding a high-confidence reachability guarantee for the high-dimensional controller. We investigate two inflation techniques -- based on trajectories and control actions -- both of which show convincing performance in three OpenAI gym benchmarks.

The integration of new technology with cultural studies enhances our understanding of cultural heritage but often struggles to connect with diverse audiences. It is challenging to align personal interpretations with the intended meanings across different cultures. Our study investigates the important factors in appreciating art from a cross-cultural perspective. We explore the application of Large Language Models (LLMs) to bridge the cultural and language barriers in understanding Traditional Chinese Paintings (TCPs). We present CultiVerse, a visual analytics system that utilizes LLMs within a mixed-initiative framework, enhancing interpretative appreciation of TCP in a cross-cultural dialogue. CultiVerse addresses the challenge of translating the nuanced symbolism in art, which involves interpreting complex cultural contexts, aligning cross-cultural symbols, and validating cultural acceptance. CultiVerse integrates an interactive interface with the analytical capability of LLMs to explore a curated TCP dataset, facilitating the analysis of multifaceted symbolic meanings and the exploration of cross-cultural serendipitous discoveries. Empirical evaluations affirm that CultiVerse significantly improves cross-cultural understanding, offering deeper insights and engaging art appreciation.

Unlike traditional educational chatbots that rely on pre-programmed responses, large-language model-driven chatbots, such as ChatGPT, demonstrate remarkable versatility and have the potential to serve as a dynamic resource for addressing student needs from understanding advanced concepts to solving complex problems. This work explores the impact of such technology on student learning in an interdisciplinary, project-oriented data visualization course. Throughout the semester, students engaged with ChatGPT across four distinct projects, including data visualizations and implementing them using a variety of tools including Tableau, D3, and Vega-lite. We collected conversation logs and reflection surveys from the students after each assignment. In addition, we conducted interviews with selected students to gain deeper insights into their overall experiences with ChatGPT. Our analysis examined the advantages and barriers of using ChatGPT, students' querying behavior, the types of assistance sought, and its impact on assignment outcomes and engagement. Based on the findings, we discuss design considerations for an educational solution that goes beyond the basic interface of ChatGPT, specifically tailored for data visualization education.

Minimizing the need for pixel-level annotated data for training PET anomaly segmentation networks is crucial, particularly due to time and cost constraints related to expert annotations. Current un-/weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks trained only on healthy data, although these are more challenging to train. In this work, we present a weakly supervised and Implicitly guided COuNterfactual diffusion model for Detecting Anomalies in PET images, branded as IgCONDA-PET. The training is conditioned on image class labels (healthy vs. unhealthy) along with implicit guidance to generate counterfactuals for an unhealthy image with anomalies. The counterfactual generation process synthesizes the healthy counterpart for a given unhealthy image, and the difference between the two facilitates the identification of anomaly locations. The code is available at: //github.com/igcondapet/IgCONDA-PET.git

As an emerging computing paradigm, edge computing offers computing resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical in reality. However, previous works assume user privacy information to be known or consider the number of users in edge scenarios to be static. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computing resources with different configurations to clients in turn. Clients independently choose which computing resources to purchase and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without considering clients' preferences. Experimental results show that the revenue of ECSP in Egret is only 1.29\% lower than Oracle and 23.43\% better than the state-of-the-art when the client arrives dynamically.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

北京阿比特科技有限公司