Context: Sustainable corporate behavior is increasingly valued by society and impacts corporate reputation and customer trust. Hence, companies regularly publish sustainability reports to shed light on their impact on environmental, social, and governance (ESG) factors. Problem: Sustainability reports are written by companies themselves and are therefore considered a company-controlled source. Contrary, studies reveal that non-corporate channels (e.g., media coverage) represent the main driver for ESG transparency. However, analysing media coverage regarding ESG factors is challenging since (1) the amount of published news articles grows daily, (2) media coverage data does not necessarily deal with an ESG-relevant topic, meaning that it must be carefully filtered, and (3) the majority of media coverage data is unstructured. Research Goal: We aim to extract ESG-relevant information from textual media reactions automatically to calculate an ESG score for a given company. Our goal is to reduce the cost of ESG data collection and make ESG information available to the general public. Contribution: Our contributions are three-fold: First, we publish a corpus of 432,411 news headlines annotated as being environmental-, governance-, social-related, or ESG-irrelevant. Second, we present our tool-supported approach called ESG-Miner capable of analyzing and evaluating headlines on corporate ESG-performance automatically. Third, we demonstrate the feasibility of our approach in an experiment and apply the ESG-Miner on 3000 manually labeled headlines. Our approach processes 96.7 % of the headlines correctly and shows a great performance in detecting environmental-related headlines along with their correct sentiment. We encourage fellow researchers and practitioners to use the ESG-Miner at //www.esg-miner.com.
Due to the growing adoption of deep neural networks in many fields of science and engineering, modeling and estimating their uncertainties has become of primary importance. Despite the growing literature about uncertainty quantification in deep learning, the quality of the uncertainty estimates remains an open question. In this work, we assess for the first time the performance of several approximation methods for Bayesian neural networks on regression tasks by evaluating the quality of the confidence regions with several coverage metrics. The selected algorithms are also compared in terms of predictivity, kernelized Stein discrepancy and maximum mean discrepancy with respect to a reference posterior in both weight and function space. Our findings show that (i) some algorithms have excellent predictive performance but tend to largely over or underestimate uncertainties (ii) it is possible to achieve good accuracy and a given target coverage with finely tuned hyperparameters and (iii) the promising kernel Stein discrepancy cannot be exclusively relied on to assess the posterior approximation. As a by-product of this benchmark, we also compute and visualize the similarity of all algorithms and corresponding hyperparameters: interestingly we identify a few clusters of algorithms with similar behavior in weight space, giving new insights on how they explore the posterior distribution.
Exploration of the physical environment is an indispensable precursor to data acquisition and enables knowledge generation via analytical or direct trialing. Artificial Intelligence lacks the exploratory capabilities of even the most underdeveloped organisms, hindering its autonomy and adaptability. Supported by cognitive psychology, this works links human behavior and artificial agents to endorse self-development. In accordance with reported data, paradigms of epistemic and achievement emotion are embedded to machine-learning methodology contingent on their impact when decision making. A study is subsequently designed to mirror previous human trials, which artificial agents are made to undergo repeatedly towards convergence. Results demonstrate causality, learned by the vast majority of agents, between their internal states and exploration to match those reported for human counterparts. The ramifications of these findings are pondered for both research into human cognition and betterment of artificial intelligence.
The Computers Are Social Actors paradigm suggests people exhibit social/anthropomorphic biases in their treatment of technology. Such insights have encouraged the design of interfaces that interact with users in more social (chatty or even friend-like) ways. However, in typical `dark pattern' fashion, social-emotional responses to systems as (seemingly sentient) agents can be harnessed to manipulate user behaviour. An increasingly common example is app notifications that assume person-like tones to persuade or pressure users into compliance. Regardless of being manipulative, difficulties meeting contextual social expectations can make automated social acting seem rude, invasive, tactless, and even disrespectful - constituting 'social' anti-patterns. This paper explores ways to improve how automated systems treat people in interactions. We mixed four qualitative methods to elicit user experiences and preferences regarding how automated systems "talk" to/at them. We identify an emerging 'social' class of dark and anti-patterns, and propose guidelines for helping (social) interfaces treat users in more respectful, tactful, and autonomy-supportive ways.
A syntax is compositional if complex components can be constructed out of simpler ones on the basis of their interfaces, without inspecting their internals. Digital circuits, despite having been studied for nearly a century and used at scale for about half that time, have until recently evaded a fully compositional theoretical understanding. The sticking point has been the need to avoid feedback loops that bypass memory elements, the so called `combinational feedback' problem. This requires examining the internal structure of a circuit, defeating compositionality. Recent work remedied this theoretical shortcoming by showing how digital circuits can be presented compositionally as morphisms in a freely generated Cartesian traced (dataflow) category. The focus was to support a better syntactical understanding of digital circuits, culminating in the formulation of novel operational semantics for digital circuits using an equational theory. The goals of this paper are twofold. First we formalise the semantics of digital circuits by interpreting them as functions on streams with certain properties. Second we refine the previous equational theory so that it is in perfect agreement with the semantic model. To support this result we introduce two key equations: the first can eliminate non-delay-guarded feedback via finite unfoldings, and the second can translate between circuits with the same behaviour syntactically by reducing the problem to checking a finite number of closed circuits. While these are enough to establish a correspondence between the denotational and the equational frameworks, we also show how simpler equations can be derived for more intuitive reasoning. The most important consequence of this is that we can now give a recipe that ensures a circuit always produces observable output, thus using the denotational model to inform and improve the operational semantics.
Discrete prompts have been used for fine-tuning Pre-trained Language Models for diverse NLP tasks. In particular, automatic methods that generate discrete prompts from a small set of training instances have reported superior performance. However, a closer look at the learnt prompts reveals that they contain noisy and counter-intuitive lexical constructs that would not be encountered in manually-written prompts. This raises an important yet understudied question regarding the robustness of automatically learnt discrete prompts when used in downstream tasks. To address this question, we conduct a systematic study of the robustness of discrete prompts by applying carefully designed perturbations into an application using AutoPrompt and then measure their performance in two Natural Language Inference (NLI) datasets. Our experimental results show that although the discrete prompt-based method remains relatively robust against perturbations to NLI inputs, they are highly sensitive to other types of perturbations such as shuffling and deletion of prompt tokens. Moreover, they generalize poorly across different NLI datasets. We hope our findings will inspire future work on robust discrete prompt learning.
Large language models (LMs) are increasingly pretrained on massive corpora of open-source programs and applied to solve program synthesis tasks. However, a fundamental limitation of LMs is their unawareness of security and vulnerability during pretraining and inference. As a result, LMs produce secure or vulnerable programs with high uncertainty (e.g., around 60%/40% chances for GitHub Copilot according to a recent study). This greatly impairs LMs' usability, especially in security-sensitive scenarios. To address this limitation, this work formulates a new problem called controlled code generation, which allows users to input a boolean property into an LM to control if the LM generates secure or vulnerable code. We propose svGen, an effective and lightweight learning approach for solving controlled code generation. svGen leverages property-specific continuous vectors to steer program generation toward the given property, without altering the weights of the LM. svGen's training optimizes those continuous vectors by carefully applying specialized loss terms on different regions of code. Our extensive evaluation shows that svGen achieves strong control capability across various software vulnerabilities and LMs of different parameter sizes. For example, on 9 dangerous vulnerabilities, a state-of-the-art CodeGen LM with 2.7B parameters generates secure programs with a 57% chance. When we use svGen to control the LM to generate secure (resp., vulnerable) programs, the chance is significantly increased to 82% (resp., decreased to 35%).
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.