Spoken language assessment (SLA) systems restrict themselves to evaluating the pronunciation and oral fluency of a speaker by analysing the read and spontaneous spoken utterances respectively. The assessment of language grammar or vocabulary is relegated to written language assessment (WLA) systems. Most WLA systems present a set of sentences from a curated finite-size database of sentences thereby making it possible to anticipate the test questions and train oneself. In this paper, we propose a novel end-to-end SLA system to assess language grammar from spoken utterances thus making WLA systems redundant; additionally, we make the assessment largely unteachable by employing a large language model (LLM) to bring in variations in the test. We further demonstrate that a hybrid automatic speech recognition (ASR) with a custom-built language model outperforms the state-of-the-art ASR engine for spoken grammar assessment.
As large language models (LLMs) have grown in prevalence, particular benchmarks have become essential for the evaluation of these models and for understanding model capabilities. Most commonly, we use test accuracy averaged across multiple subtasks in order to rank models on leaderboards, to determine which model is best for our purposes. In this paper, we investigate the robustness of the accuracy measurement on a widely used multiple choice question answering dataset, MMLU. When shuffling the answer label contents, we find that all explored models decrease in accuracy on MMLU, but not every model is equally sensitive. These findings suggest a possible adjustment to the standard practice of leaderboard testing, where we additionally consider the percentage of examples each model answers correctly by random chance.
Context-free language (CFL) reachability is a standard approach in static analyses, where the analysis question is phrased as a language reachability problem on a graph $G$ wrt a CFL L. While CFLs lack the expressiveness needed for high precision, common formalisms for context-sensitive languages are such that the corresponding reachability problem is undecidable. Are there useful context-sensitive language-reachability models for static analysis? In this paper, we introduce Multiple Context-Free Language (MCFL) reachability as an expressive yet tractable model for static program analysis. MCFLs form an infinite hierarchy of mildly context sensitive languages parameterized by a dimension $d$ and a rank $r$. We show the utility of MCFL reachability by developing a family of MCFLs that approximate interleaved Dyck reachability, a common but undecidable static analysis problem. We show that MCFL reachability be computed in $O(n^{2d+1})$ time on a graph of $n$ nodes when $r=1$, and $O(n^{d(r+1)})$ time when $r>1$. Moreover, we show that when $r=1$, the membership problem has a lower bound of $n^{2d}$ based on the Strong Exponential Time Hypothesis, while reachability for $d=1$ has a lower bound of $n^{3}$ based on the combinatorial Boolean Matrix Multiplication Hypothesis. Thus, for $r=1$, our algorithm is optimal within a factor $n$ for all levels of the hierarchy based on $d$. We implement our MCFL reachability algorithm and evaluate it by underapproximating interleaved Dyck reachability for a standard taint analysis for Android. Used alongside existing overapproximate methods, MCFL reachability discovers all tainted information on 8 out of 11 benchmarks, and confirms $94.3\%$ of the reachable pairs reported by the overapproximation on the remaining 3. To our knowledge, this is the first report of high and provable coverage for this challenging benchmark set.
Graph learning architectures based on the k-dimensional Weisfeiler-Leman (k-WL) hierarchy offer a theoretically well-understood expressive power. However, such architectures often fail to deliver solid predictive performance on real-world tasks, limiting their practical impact. In contrast, global attention-based models such as graph transformers demonstrate strong performance in practice, but comparing their expressive power with the k-WL hierarchy remains challenging, particularly since these architectures rely on positional or structural encodings for their expressivity and predictive performance. To address this, we show that the recently proposed Edge Transformer, a global attention model operating on node pairs instead of nodes, has at least 3-WL expressive power. Empirically, we demonstrate that the Edge Transformer surpasses other theoretically aligned architectures regarding predictive performance while not relying on positional or structural encodings. Our code is available at //github.com/luis-mueller/towards-principled-gts
Developing robust automatic speech recognition (ASR) systems for Arabic, a language characterized by its rich dialectal diversity and often considered a low-resource language in speech technology, demands effective strategies to manage its complexity. This study explores three critical factors influencing ASR performance: the role of dialectal coverage in pre-training, the effectiveness of dialect-specific fine-tuning compared to a multi-dialectal approach, and the ability to generalize to unseen dialects. Through extensive experiments across different dialect combinations, our findings offer key insights towards advancing the development of ASR systems for pluricentric languages like Arabic.
Large language models (LLMs) have significantly advanced Natural Language Processing (NLP) tasks in recent years. However, their universal nature poses limitations in scenarios requiring personalized responses, such as recommendation systems and chatbots. This paper investigates methods to personalize LLMs, comparing fine-tuning and zero-shot reasoning approaches on subjective tasks. Results demonstrate that personalized fine-tuning improves model reasoning compared to non-personalized models. Experiments on datasets for emotion recognition and hate speech detection show consistent performance gains with personalized methods across different LLM architectures. These findings underscore the importance of personalization for enhancing LLM capabilities in subjective text perception tasks.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.
We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.