亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A growing awareness of multi-view learning as an important component in data science and machine learning is a consequence of the increasing prevalence of multiple views in real-world applications, especially in the context of networks. In this paper we introduce a new scalability framework for multi-view subspace clustering. An efficient optimization strategy is proposed, leveraging kernel feature maps to reduce the computational burden while maintaining good clustering performance. The scalability of the algorithm means that it can be applied to large-scale datasets, including those with millions of data points, using a standard machine, in a few minutes. We conduct extensive experiments on real-world benchmark networks of various sizes in order to evaluate the performance of our algorithm against state-of-the-art multi-view subspace clustering methods and attributed-network multi-view approaches.

相關內容

Smoothed online learning has emerged as a popular framework to mitigate the substantial loss in statistical and computational complexity that arises when one moves from classical to adversarial learning. Unfortunately, for some spaces, it has been shown that efficient algorithms suffer an exponentially worse regret than that which is minimax optimal, even when the learner has access to an optimization oracle over the space. To mitigate that exponential dependence, this work introduces a new notion of complexity, the generalized bracketing numbers, which marries constraints on the adversary to the size of the space, and shows that an instantiation of Follow-the-Perturbed-Leader can attain low regret with the number of calls to the optimization oracle scaling optimally with respect to average regret. We then instantiate our bounds in several problems of interest, including online prediction and planning of piecewise continuous functions, which has many applications in fields as diverse as econometrics and robotics.

Based on multilingual pre-trained models, cross-lingual transfer with prompt learning has shown promising effectiveness, where soft prompt learned in a source language is transferred to target languages for downstream tasks, particularly in the low-resource scenario. To efficiently transfer soft prompt, we propose a novel framework, Multilingual Prompt Translator (MPT), where a multilingual prompt translator is introduced to properly process crucial knowledge embedded in prompt by changing language knowledge while retaining task knowledge. Concretely, we first train prompt in source language and employ translator to translate it into target prompt. Besides, we extend an external corpus as auxiliary data, on which an alignment task for predicted answer probability is designed to convert language knowledge, thereby equipping target prompt with multilingual knowledge. In few-shot settings on XNLI, MPT demonstrates superiority over baselines by remarkable improvements. MPT is more prominent compared with vanilla prompting when transferring to languages quite distinct from source language.

Geometric regularity, which leverages data symmetry, has been successfully incorporated into deep learning architectures such as CNNs, RNNs, GNNs, and Transformers. While this concept has been widely applied in robotics to address the curse of dimensionality when learning from high-dimensional data, the inherent reflectional and rotational symmetry of robot structures has not been adequately explored. Drawing inspiration from cooperative multi-agent reinforcement learning, we introduce novel network structures for single-agent control learning that explicitly capture these symmetries. Moreover, we investigate the relationship between the geometric prior and the concept of Parameter Sharing in multi-agent reinforcement learning. Last but not the least, we implement the proposed framework in online and offline learning methods to demonstrate its ease of use. Through experiments conducted on various challenging continuous control tasks on simulators and real robots, we highlight the significant potential of the proposed geometric regularity in enhancing robot learning capabilities.

Addressing the large distribution gap between training and testing data has long been a challenge in machine learning, giving rise to fields such as transfer learning and domain adaptation. Recently, Continuous Domain Adaptation (CDA) has emerged as an effective technique, closing this gap by utilizing a series of intermediate domains. This paper contributes a novel CDA method, W-MPOT, which rigorously addresses the domain ordering and error accumulation problems overlooked by previous studies. Specifically, we construct a transfer curriculum over the source and intermediate domains based on Wasserstein distance, motivated by theoretical analysis of CDA. Then we transfer the source model to the target domain through multiple valid paths in the curriculum using a modified version of continuous optimal transport. A bidirectional path consistency constraint is introduced to mitigate the impact of accumulated mapping errors during continuous transfer. We extensively evaluate W-MPOT on multiple datasets, achieving up to 54.1\% accuracy improvement on multi-session Alzheimer MR image classification and 94.7\% MSE reduction on battery capacity estimation.

In the realm of machine learning, traditional model development and automated approaches like AutoML typically rely on layers of abstraction, such as tree-based or Cartesian genetic programming. Our study introduces "Guided Evolution" (GE), a novel framework that diverges from these methods by utilizing Large Language Models (LLMs) to directly modify code. GE leverages LLMs for a more intelligent, supervised evolutionary process, guiding mutations and crossovers. Our unique "Evolution of Thought" (EoT) technique further enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations. This results in a self-sustaining feedback loop that augments decision-making in model evolution. GE maintains genetic diversity, crucial for evolutionary algorithms, by leveraging LLMs' capability to generate diverse responses from expertly crafted prompts and modulate model temperature. This not only accelerates the evolution process but also injects expert like creativity and insight into the process. Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy: the LLM-driven GE autonomously produced variants with improved accuracy, increasing from 92.52% to 93.34%, without compromising model compactness. This underscores the potential of LLMs to accelerate the traditional model design pipeline, enabling models to autonomously evolve and enhance their own designs.

Multi-view representation learning aims to derive robust representations that are both view-consistent and view-specific from diverse data sources. This paper presents an in-depth analysis of existing approaches in this domain, highlighting a commonly overlooked aspect: the redundancy between view-consistent and view-specific representations. To this end, we propose an innovative framework for multi-view representation learning, which incorporates a technique we term 'distilled disentangling'. Our method introduces the concept of masked cross-view prediction, enabling the extraction of compact, high-quality view-consistent representations from various sources without incurring extra computational overhead. Additionally, we develop a distilled disentangling module that efficiently filters out consistency-related information from multi-view representations, resulting in purer view-specific representations. This approach significantly reduces redundancy between view-consistent and view-specific representations, enhancing the overall efficiency of the learning process. Our empirical evaluations reveal that higher mask ratios substantially improve the quality of view-consistent representations. Moreover, we find that reducing the dimensionality of view-consistent representations relative to that of view-specific representations further refines the quality of the combined representations. Our code is accessible at: //github.com/Guanzhou-Ke/MRDD.

Long-term trajectory forecasting is an important and challenging problem in the fields of computer vision, machine learning, and robotics. One fundamental difficulty stands in the evolution of the trajectory that becomes more and more uncertain and unpredictable as the time horizon grows, subsequently increasing the complexity of the problem. To overcome this issue, in this paper, we propose Di-Long, a new method that employs the distillation of a short-term trajectory model forecaster that guides a student network for long-term trajectory prediction during the training process. Given a total sequence length that comprehends the allowed observation for the student network and the complementary target sequence, we let the student and the teacher solve two different related tasks defined over the same full trajectory: the student observes a short sequence and predicts a long trajectory, whereas the teacher observes a longer sequence and predicts the remaining short target trajectory. The teacher's task is less uncertain, and we use its accurate predictions to guide the student through our knowledge distillation framework, reducing long-term future uncertainty. Our experiments show that our proposed Di-Long method is effective for long-term forecasting and achieves state-of-the-art performance on the Intersection Drone Dataset (inD) and the Stanford Drone Dataset (SDD).

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

北京阿比特科技有限公司