亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the optimal estimation of probability matrices of random graph models generated from graphons. This problem has been extensively studied in the case of step-graphons and H\"older smooth graphons. In this work, we characterize the regularity of graphons based on the decay rates of their eigenvalues. Our results show that for such classes of graphons, the minimax upper bound is achieved by a spectral thresholding algorithm and matches an information-theoretic lower bound up to a log factor. We provide insights on potential sources of this extra logarithm factor and discuss scenarios where exactly matching bounds can be obtained. This marks a difference from the step-graphon and H\"older smooth settings, because in those settings, there is a known computational-statistical gap where no polynomial time algorithm can achieve the statistical minimax rate. This contrast reflects a deeper observation that the spectral decay is an intrinsic feature of a graphon while smoothness is not.

相關內容

Generalized additive models for location, scale and shape (GAMLSS) are a popular extension to mean regression models where each parameter of an arbitrary distribution is modelled through covariates. While such models have been developed for univariate and bivariate responses, the truly multivariate case remains extremely challenging for both computational and theoretical reasons. Alternative approaches to GAMLSS may allow for higher dimensional response vectors to be modelled jointly but often assume a fixed dependence structure not depending on covariates or are limited with respect to modelling flexibility or computational aspects. We contribute to this gap in the literature and propose a truly multivariate distributional model, which allows one to benefit from the flexibility of GAMLSS even when the response has dimension larger than two or three. Building on copula regression, we model the dependence structure of the response through a Gaussian copula, while the marginal distributions can vary across components. Our model is highly parameterized but estimation becomes feasible with Bayesian inference employing shrinkage priors. We demonstrate the competitiveness of our approach in a simulation study and illustrate how it complements existing models along the examples of childhood malnutrition and a yet unexplored data set on traffic detection in Berlin.

We present a new angle on the expressive power of graph neural networks (GNNs) by studying how the predictions of real-valued GNN classifiers, such as those classifying graphs probabilistically, evolve as we apply them on larger graphs drawn from some random graph model. We show that the output converges to a constant function, which upper-bounds what these classifiers can uniformly express. This strong convergence phenomenon applies to a very wide class of GNNs, including state of the art models, with aggregates including mean and the attention-based mechanism of graph transformers. Our results apply to a broad class of random graph models, including sparse and dense variants of the Erd\H{o}s-R\'enyi model, the stochastic block model, and the Barab\'asi-Albert model. We empirically validate these findings, observing that the convergence phenomenon appears not only on random graphs but also on some real-world graphs.

This paper studies simple bilevel problems, where a convex upper-level function is minimized over the optimal solutions of a convex lower-level problem. We first show the fundamental difficulty of simple bilevel problems, that the approximate optimal value of such problems is not obtainable by first-order zero-respecting algorithms. Then we follow recent works to pursue the weak approximate solutions. For this goal, we propose novel near-optimal methods for smooth and nonsmooth problems by reformulating them into functionally constrained problems.

Despite their proficiency in math tasks, the mechanisms underlying LLMs' mathematical reasoning abilities remain a subject of debate. Recent studies suggest that chain-of-thought (CoT) prompts can bolster mathematical reasoning by encouraging LLMs to employ human-like logical reasoning (System 2), enabling them to excel on the Cognitive Reflection Test (CRT). To assess whether LLMs genuinely possess System 2-like logical reasoning, we introduced targeted modifications to CRT problems. Our findings reveal that, despite the use of CoT prompts, mainstream LLMs, including the latest o1-preview model, continue to exhibit a significant error rate. Further analysis indicates that they predominantly rely on System 1-like intuitive reasoning and pattern matching derived from training data, rather than demonstrating mastery of mathematical thinking. This discovery challenges the prevailing notion that LLMs possess genuine logical reasoning abilities and that CoT can enhance them. Consequently, this work may temper overly optimistic projections regarding LLMs' advancement toward artificial general intelligence.

A key goal in mechanistic interpretability is circuit analysis: finding sparse subgraphs of models corresponding to specific behaviors or capabilities. However, MLP sublayers make fine-grained circuit analysis on transformer-based language models difficult. In particular, interpretable features -- such as those found by sparse autoencoders (SAEs) -- are typically linear combinations of extremely many neurons, each with its own nonlinearity to account for. Circuit analysis in this setting thus either yields intractably large circuits or fails to disentangle local and global behavior. To address this we explore transcoders, which seek to faithfully approximate a densely activating MLP layer with a wider, sparsely-activating MLP layer. We introduce a novel method for using transcoders to perform weights-based circuit analysis through MLP sublayers. The resulting circuits neatly factorize into input-dependent and input-invariant terms. We then successfully train transcoders on language models with 120M, 410M, and 1.4B parameters, and find them to perform at least on par with SAEs in terms of sparsity, faithfulness, and human-interpretability. Finally, we apply transcoders to reverse-engineer unknown circuits in the model, and we obtain novel insights regarding the "greater-than circuit" in GPT2-small. Our results suggest that transcoders can prove effective in decomposing model computations involving MLPs into interpretable circuits. Code is available at //github.com/jacobdunefsky/transcoder_circuits/.

Symmetry detection can improve various machine learning tasks. In the context of continuous symmetry detection, current state of the art experiments are limited to detecting affine transformations. Under the manifold assumption, we outline a framework for discovering continuous symmetry in data beyond the affine transformation group. We also provide a similar framework for discovering discrete symmetry. We experimentally compare our method to an existing method known as LieGAN and show that our method is competitive at detecting affine symmetries for large sample sizes and superior than LieGAN for small sample sizes. We also show our method is able to detect continuous symmetries beyond the affine group and is generally more computationally efficient than LieGAN.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司