Internet of Things (IoT) devices are capable of allowing for far-reaching access to and evaluation of patient data to monitor health and diagnose from a distance. An electronic healthcare system that checks patient data, prepares medicines and provides financial assistance is necessary. Providing safe data transmission, monitoring, decentralization, preserving patient privacy, and maintaining confidentiality are essential to an electronic healthcare system. In this study, we introduce (SCALHEALTH) which is a blockchain-based scheme of the Hyperledger Fabric consortium. In this study, we use authentication to agree on a common key for data encryption to send data confidentially. Also, sending data through IPFS is decentralized. Non-fungible token (NFT) is used to send patient prescriptions to pharmacies and insurance companies to ensure the authenticity of patient prescriptions. As the system's main body, blockchain creates authorization and validation for all devices and institutions. Also, all metadata in the system is recorded on the blockchain to maintain integrity, transparency, and timely data monitoring. The proposed study uses two types of blockchain: a health blockchain and a financial blockchain. The financial blockchain is for financial transactions and is based on Ethereum. The health blockchain also introduces a mechanism that allows several blockchains to be active in parallel, instead of only one blockchain. The prototype of this mechanism is simulated in two scenarios. In comparison to the normal state, the proposed plan has superior results.
Existing datasets for attribute value extraction (AVE) predominantly focus on explicit attribute values while neglecting the implicit ones, lack product images, are often not publicly available, and lack an in-depth human inspection across diverse domains. To address these limitations, we present ImplicitAVE, the first, publicly available multimodal dataset for implicit attribute value extraction. ImplicitAVE, sourced from the MAVE dataset, is carefully curated and expanded to include implicit AVE and multimodality, resulting in a refined dataset of 68k training and 1.6k testing data across five domains. We also explore the application of multimodal large language models (MLLMs) to implicit AVE, establishing a comprehensive benchmark for MLLMs on the ImplicitAVE dataset. Six recent MLLMs with eleven variants are evaluated across diverse settings, revealing that implicit value extraction remains a challenging task for MLLMs. The contributions of this work include the development and release of ImplicitAVE, and the exploration and benchmarking of various MLLMs for implicit AVE, providing valuable insights and potential future research directions. Dataset and code are available at //github.com/HenryPengZou/ImplicitAVE
Massive MIMO (multiple-input multiple-output) detection is an important topic in wireless communication and various machine learning based methods have been developed recently for this task. Expectation propagation (EP) and its variants are widely used for MIMO detection and have achieved the best performance. However, EP-based solvers fail to capture the correlation between unknown variables, leading to loss of information, and in addition, they are computationally expensive. In this paper, we show that the real-valued system can be modeled as spectral signal convolution on graph, through which the correlation between unknown variables can be captured. Based on this analysis, we propose graph convolution-enhanced expectation propagation (GCEPNet), a graph convolution-enhanced EP detector. GCEPNet incorporates data-dependent attention scores into Chebyshev polynomial for powerful graph convolution with better generalization capacity. It enables a better estimation of the cavity distribution for EP and empirically achieves the state-of-the-art (SOTA) MIMO detection performance with much faster inference speed. To our knowledge, we are the first to shed light on the connection between the system model and graph convolution, and the first to design the data-dependent attention scores for graph convolution.
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise. This paper introduces EEGEncoder, a deep learning framework that employs transformer models to surmount these limitations. Our innovative multi-scale fusion architecture captures both immediate and extended temporal features, thereby enhancing MI task classification precision. EEGEncoder's key innovations include the inaugural application of transformers in MI-EEG signal classification, a mixup data augmentation strategy for bolstered generalization, and a multi-task learning approach for refined predictive accuracy. When tested on the BCI Competition IV dataset 2a, our model established a new benchmark with its state-of-the-art performance. EEGEncoder signifies a substantial advancement in BCI technology, offering a robust, efficient, and effective tool for transforming thought into action, with the potential to significantly enhance the quality of life for those dependent on BCIs.
Sliced Wasserstein (SW) and Generalized Sliced Wasserstein (GSW) have been widely used in applications due to their computational and statistical scalability. However, the SW and the GSW are only defined between distributions supported on a homogeneous domain. This limitation prevents their usage in applications with heterogeneous joint distributions with marginal distributions supported on multiple different domains. Using SW and GSW directly on the joint domains cannot make a meaningful comparison since their homogeneous slicing operator i.e., Radon Transform (RT) and Generalized Radon Transform (GRT) are not expressive enough to capture the structure of the joint supports set. To address the issue, we propose two new slicing operators i.e., Partial Generalized Radon Transform (PGRT) and Hierarchical Hybrid Radon Transform (HHRT). In greater detail, PGRT is the generalization of Partial Radon Transform (PRT), which transforms a subset of function arguments non-linearly while HHRT is the composition of PRT and multiple domain-specific PGRT on marginal domain arguments. By using HHRT, we extend the SW into Hierarchical Hybrid Sliced Wasserstein (H2SW) distance which is designed specifically for comparing heterogeneous joint distributions. We then discuss the topological, statistical, and computational properties of H2SW. Finally, we demonstrate the favorable performance of H2SW in 3D mesh deformation, deep 3D mesh autoencoders, and datasets comparison.
We are witnessing an increasing availability of streaming data that may contain valuable information on the underlying processes. It is thus attractive to be able to deploy machine learning models on edge devices near sensors such that decisions can be made instantaneously, rather than first having to transmit incoming data to servers. To enable deployment on edge devices with limited storage and computational capabilities, the full-precision parameters in standard models can be quantized to use fewer bits. The resulting quantized models are then calibrated using back-propagation and full training data to ensure accuracy. This one-time calibration works for deployments in static environments. However, model deployment in dynamic edge environments call for continual calibration to adaptively adjust quantized models to fit new incoming data, which may have different distributions. The first difficulty in enabling continual calibration on the edge is that the full training data may be too large and thus not always available on edge devices. The second difficulty is that the use of back-propagation on the edge for repeated calibration is too expensive. We propose QCore to enable continual calibration on the edge. First, it compresses the full training data into a small subset to enable effective calibration of quantized models with different bit-widths. We also propose means of updating the subset when new streaming data arrives to reflect changes in the environment, while not forgetting earlier training data. Second, we propose a small bit-flipping network that works with the subset to update quantized model parameters, thus enabling efficient continual calibration without back-propagation. An experimental study, conducted with real-world data in a continual learning setting, offers insight into the properties of QCore and shows that it is capable of outperforming strong baseline methods.
Blockchain technology ensures secure and trustworthy data flow between multiple participants on the chain, but interoperability of on-chain and off-chain data has always been a difficult problem that needs to be solved. To solve the problem that blockchain systems cannot access off-chain data, oracle is introduced. however, existing research mainly focuses on the consistency and integrity of data, but ignores the problem that oracle nodes may be externally attacked or provide false data for selfish motives, resulting in the unresolved problem of data accuracy. In this paper, we introduce a new decentralized testing architecture (DesTest) that aims to improve data accuracy. A blockchain oracle random secret testing mechanism is first proposed to enhance the monitoring and verification of nodes by introducing a dynamic anonymized question-verification committee. Based on this, a comprehensive evaluation incentive mechanism is designed to incentivize honest work performance by evaluating nodes based on their reputation scores. The simulation results show that we successfully reduced the discrete entropy value of the acquired data and the real value of the data by 61.4%.
Present-day graphical user interfaces (GUIs) exhibit diverse arrangements of text, graphics, and interactive elements such as buttons and menus, but representations of GUIs have not kept up. They do not encapsulate both semantic and visuo-spatial relationships among elements. To seize machine learning's potential for GUIs more efficiently, Graph4GUI exploits graph neural networks to capture individual elements' properties and their semantic-visuo-spatial constraints in a layout. The learned representation demonstrated its effectiveness in multiple tasks, especially generating designs in a challenging GUI autocompletion task, which involved predicting the positions of remaining unplaced elements in a partially completed GUI. The new model's suggestions showed alignment and visual appeal superior to the baseline method and received higher subjective ratings for preference. Furthermore, we demonstrate the practical benefits and efficiency advantages designers perceive when utilizing our model as an autocompletion plug-in.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.