亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Struggling to curb misinformation, social media platforms are experimenting with design interventions to enhance consumption of credible news on their platforms. Some of these interventions, such as the use of warning messages, are examples of nudges -- a choice-preserving technique to steer behavior. Despite their application, we do not know whether nudges could steer people into making conscious news credibility judgments online and if they do, under what constraints. To answer, we combine nudge techniques with heuristic based information processing to design NudgeCred -- a browser extension for Twitter. NudgeCred directs users' attention to two design cues: authority of a source and other users' collective opinion on a report by activating three design nudges -- Reliable, Questionable, and Unreliable, each denoting particular levels of credibility for news tweets. In a controlled experiment, we found that NudgeCred significantly helped users (n=430) distinguish news tweets' credibility, unrestricted by three behavioral confounds -- political ideology, political cynicism, and media skepticism. A five-day field deployment with twelve participants revealed that NudgeCred improved their recognition of news items and attention towards all of our nudges, particularly towards Questionable. Among other considerations, participants proposed that designers should incorporate heuristics that users' would trust. Our work informs nudge-based system design approaches for online media.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Machine Learning · ML · 學成 · 人機交互 ·
2021 年 9 月 30 日

Considering the large amount of available content, social media platforms increasingly employ machine learning (ML) systems to curate news. This paper examines how well different explanations help expert users understand why certain news stories are recommended to them. The expert users were journalists, who are trained to judge the relevance of news. Surprisingly, none of the explanations are perceived as helpful. Our investigation provides a first indication of a gap between what is available to explain ML-based curation systems and what users need to understand such systems. We call this the Explanatory Gap in Machine Learning-based Curation Systems.

In recent years, misinformation on the Web has become increasingly rampant. The research community has responded by proposing systems and challenges, which are beginning to be useful for (various subtasks of) detecting misinformation. However, most proposed systems are based on deep learning techniques which are fine-tuned to specific domains, are difficult to interpret and produce results which are not machine readable. This limits their applicability and adoption as they can only be used by a select expert audience in very specific settings. In this paper we propose an architecture based on a core concept of Credibility Reviews (CRs) that can be used to build networks of distributed bots that collaborate for misinformation detection. The CRs serve as building blocks to compose graphs of (i) web content, (ii) existing credibility signals --fact-checked claims and reputation reviews of websites--, and (iii) automatically computed reviews. We implement this architecture on top of lightweight extensions to Schema.org and services providing generic NLP tasks for semantic similarity and stance detection. Evaluations on existing datasets of social-media posts, fake news and political speeches demonstrates several advantages over existing systems: extensibility, domain-independence, composability, explainability and transparency via provenance. Furthermore, we obtain competitive results without requiring finetuning and establish a new state of the art on the Clef'18 CheckThat! Factuality task.

Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of users. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an author's history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.

Nowadays, recommender systems are present in many daily activities such as online shopping, browsing social networks, etc. Given the rising demand for reinvigoration of the tourist industry through information technology, recommenders have been included into tourism websites such as Expedia, Booking or Tripadvisor, among others. Furthermore, the amount of scientific papers related to recommender systems for tourism is on solid and continuous growth since 2004. Much of this growth is due to social networks that, besides to offer researchers the possibility of using a great mass of available and constantly updated data, they also enable the recommendation systems to become more personalised, effective and natural. This paper reviews and analyses many research publications focusing on tourism recommender systems that use social networks in their projects. We detail their main characteristics, like which social networks are exploited, which data is extracted, the applied recommendation techniques, the methods of evaluation, etc. Through a comprehensive literature review, we aim to collaborate with the future recommender systems, by giving some clear classifications and descriptions of the current tourism recommender systems.

Most existing recommender systems leverage user behavior data of one type only, such as the purchase behavior in E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. Besides the key behavioral data, we argue that other forms of user behaviors also provide valuable signal, such as views, clicks, adding a product to shop carts and so on. They should be taken into account properly to provide quality recommendation for users. In this work, we contribute a new solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender systems from user multi-behavior data. We develop a neural network model to capture the complicated and multi-type interactions between users and items. In particular, our model accounts for the cascading relationship among different types of behaviors (e.g., a user must click on a product before purchasing it). To fully exploit the signal in the data of multiple types of behaviors, we perform a joint optimization based on the multi-task learning framework, where the optimization on a behavior is treated as a task. Extensive experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and multi-behavior data. Further analysis shows that modeling multiple behaviors is particularly useful for providing recommendation for sparse users that have very few interactions.

Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.

With the emergence of Web 2.0, tag recommenders have become important tools, which aim to support users in finding descriptive tags for their bookmarked resources. Although current algorithms provide good results in terms of tag prediction accuracy, they are often designed in a data-driven way and thus, lack a thorough understanding of the cognitive processes that play a role when people assign tags to resources. This thesis aims at modeling these cognitive dynamics in social tagging in order to improve tag recommendations and to better understand the underlying processes. As a first attempt in this direction, we have implemented an interplay between individual micro-level (e.g., categorizing resources or temporal dynamics) and collective macro-level (e.g., imitating other users' tags) processes in the form of a novel tag recommender algorithm. The preliminary results for datasets gathered from BibSonomy, CiteULike and Delicious show that our proposed approach can outperform current state-of-the-art algorithms, such as Collaborative Filtering, FolkRank or Pairwise Interaction Tensor Factorization. We conclude that recommender systems can be improved by incorporating related principles of human cognition.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

Social media users have finite attention which limits the number of incoming messages from friends they can process. Moreover, they pay more attention to opinions and recommendations of some friends more than others. In this paper, we propose LA-LDA, a latent topic model which incorporates limited, non-uniformly divided attention in the diffusion process by which opinions and information spread on the social network. We show that our proposed model is able to learn more accurate user models from users' social network and item adoption behavior than models which do not take limited attention into account. We analyze voting on news items on the social news aggregator Digg and show that our proposed model is better able to predict held out votes than alternative models. Our study demonstrates that psycho-socially motivated models have better ability to describe and predict observed behavior than models which only consider topics.

北京阿比特科技有限公司