Blockchain technology is leading a revolutionary transformation across diverse industries, with effective governance being critical for the success and sustainability of blockchain projects. Community forums, pivotal in engaging decentralized autonomous organizations (DAOs), significantly impact blockchain governance decisions. Concurrently, Natural Language Processing (NLP), particularly sentiment analysis, provides powerful insights from textual data. While prior research has explored the potential of NLP tools in social media sentiment analysis, there is a gap in understanding the sentiment landscape of blockchain governance communities. The evolving discourse and sentiment dynamics on the forums of top DAOs remain largely unknown. This paper delves deep into the evolving discourse and sentiment dynamics on the public forums of leading DeFi projects: Aave, Uniswap, Curve DAO, Yearn.finance, Merit Circle, and Balancer, focusing primarily on discussions related to governance issues. Our study shows that participants in decentralized communities generally express positive sentiments during Discord discussions. Furthermore, there is a potential interaction between discussion intensity and sentiment dynamics; higher discussion volume may contribute to a more stable sentiment from code analysis. The insights gained from this study are valuable for decision-makers in blockchain governance, underscoring the pivotal role of sentiment analysis in interpreting community emotions and its evolving impact on the landscape of blockchain governance. This research significantly contributes to the interdisciplinary exploration of the intersection of blockchain and society, specifically emphasizing the decentralized blockchain governance ecosystem. We provide our data and code for replicability as open access on GitHub.
The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable. In this paper, we present a taxonomy of uncertainty specific to vision-language AI systems, distinguishing between epistemic uncertainty (arising from a lack of information) and aleatoric uncertainty (due to inherent unpredictability), and further explore finer categories within. Based on this taxonomy, we synthesize a benchmark dataset, CertainlyUncertain, featuring 178K visual question answering (VQA) samples as contrastive pairs. This is achieved by 1) inpainting images to make previously answerable questions into unanswerable ones; and 2) using image captions to prompt large language models for both answerable and unanswerable questions. Additionally, we introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error, to address the shortcomings of existing metrics.
Foundation models that incorporate language, vision, and more recently actions have revolutionized the ability to harness internet scale data to reason about useful tasks. However, one of the key challenges of training embodied foundation models is the lack of data grounded in the physical world. In this paper, we propose AutoRT, a system that leverages existing foundation models to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision. AutoRT leverages vision-language models (VLMs) for scene understanding and grounding, and further uses large language models (LLMs) for proposing diverse and novel instructions to be performed by a fleet of robots. Guiding data collection by tapping into the knowledge of foundation models enables AutoRT to effectively reason about autonomy tradeoffs and safety while significantly scaling up data collection for robot learning. We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies. We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
Many parallel and distributed computing research results are obtained in simulation, using simulators that mimic real-world executions on some target system. Each such simulator is configured by picking values for parameters that define the behavior of the underlying simulation models it implements. The main concern for a simulator is accuracy: simulated behaviors should be as close as possible to those observed in the real-world target system. This requires that values for each of the simulator's parameters be carefully picked, or "calibrated," based on ground-truth real-world executions. Examining the current state of the art shows that simulator calibration, at least in the field of parallel and distributed computing, is often undocumented (and thus perhaps often not performed) and, when documented, is described as a labor-intensive, manual process. In this work we evaluate the benefit of automating simulation calibration using simple algorithms. Specifically, we use a real-world case study from the field of High Energy Physics and compare automated calibration to calibration performed by a domain scientist. Our main finding is that automated calibration is on par with or significantly outperforms the calibration performed by the domain scientist. Furthermore, automated calibration makes it straightforward to operate desirable trade-offs between simulation accuracy and simulation speed.
Smart contracts, known for their immutable nature to ensure trust via automated enforcement, have evolved to require upgradeability due to unforeseen vulnerabilities and the need for feature enhancements post-deployment. This contradiction between immutability and the need for modifications has led to the development of upgradeable smart contracts. These contracts are immutable in principle yet upgradable by design, allowing updates without altering the underlying data or state, thus preserving the contract's intent while allowing improvements. This study aims to understand the application and implications of upgradeable smart contracts on the Ethereum blockchain. By introducing a dataset that catalogs the versions and evolutionary trajectories of smart contracts, the research explores key dimensions: the prevalence and adoption patterns of upgrade mechanisms, the likelihood and occurrences of contract upgrades, the nature of modifications post-upgrade, and their impact on user engagement and contract activity. Through empirical analysis, this study identifies upgradeable contracts and examines their upgrade history to uncover trends, preferences, and challenges associated with modifications. The evidence from analyzing over 44 million contracts shows that only 3% have upgradeable characteristics, with only 0.34% undergoing upgrades. This finding underscores a cautious approach by developers towards modifications, possibly due to the complexity of upgrade processes or a preference for maintaining stability. Furthermore, the study shows that upgrades are mainly aimed at feature enhancement and vulnerability mitigation, particularly when the contracts' source codes are accessible. However, the relationship between upgrades and user activity is complex, suggesting that additional factors significantly affect the use of smart contracts beyond their evolution.
Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers.
Grasping the concept of time is a fundamental facet of human cognition, indispensable for truly comprehending the intricacies of the world. Previous studies typically focus on specific aspects of time, lacking a comprehensive temporal reasoning benchmark. To address this, we propose TimeBench, a comprehensive hierarchical temporal reasoning benchmark that covers a broad spectrum of temporal reasoning phenomena. TimeBench provides a thorough evaluation for investigating the temporal reasoning capabilities of large language models. We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings. Our experimental results indicate a significant performance gap between the state-of-the-art LLMs and humans, highlighting that there is still a considerable distance to cover in temporal reasoning. Besides, LLMs exhibit capability discrepancies across different reasoning categories. Furthermore, we thoroughly analyze the impact of multiple aspects on temporal reasoning and emphasize the associated challenges. We aspire for TimeBench to serve as a comprehensive benchmark, fostering research in temporal reasoning. Resources are available at: //github.com/zchuz/TimeBench
Many networks in political and social research are bipartite, with edges connecting exclusively across two distinct types of nodes. A common example includes cosponsorship networks, in which legislators are connected indirectly through the bills they support. Yet most existing network models are designed for unipartite networks, where edges can arise between any pair of nodes. However, using a unipartite network model to analyze bipartite networks, as often done in practice, can result in aggregation bias and artificially high-clustering -- a particularly insidious problem when studying the role groups play in network formation. To address these methodological problems, we develop a statistical model of bipartite networks theorized to be generated through group interactions by extending the popular mixed-membership stochastic blockmodel. Our model allows researchers to identify the groups of nodes, within each node type in the bipartite structure, that share common patterns of edge formation. The model also incorporates both node and dyad-level covariates as the predictors of group membership and of observed dyadic relations. We develop an efficient computational algorithm for fitting the model, and apply it to cosponsorship data from the United States Senate. We show that legislators in a Senate that was perfectly split along party lines were able to remain productive and pass major legislation by forming non-partisan, power-brokering coalitions that found common ground through their collaboration on low-stakes bills. We also find evidence for norms of reciprocity, and uncover the substantial role played by policy expertise in the formation of cosponsorships between senators and legislation. We make an open-source software package available that makes it possible for other researchers to uncover similar insights from bipartite networks.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.