亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evil twin attack on Wi-Fi network has been a challenging security problem and several solutions have been proposed to this problem. In general, evil twin attack aims to exfiltrate data, like Wi-Fi and service credentials, from the client devices and considered as a serious threat at MAC layer. IoT devices with its companion apps provides different pairing methods for provisioning. The "SmartConfig Mode", the one proposed by Texas Instrument (TI) and the "Access Point pairing mode (AP mode)" are the most common pairing modes provided by the application developer and vendor of the IoT devices. Especially, AP mode use Wi-Fi connectivity to setup IoT devices where a device activates an access point to which the mobile device running the corresponding mobile application is required to connect. In this paper, we have used evil twin attack as a weapon to test the security posture of IoT devices that use Wi-Fi network to set them up. We have designed, implemented and applied a system, called iTieProbe, that can be used in ethical hacking for discovering certain vulnerabilities during such setup. AP mode successfully completes when the mobile device is able to communicate with the IoT device via a home router over a Wi-Fi network. Our proposed system, iTieProbe, is capable of discovering several serious vulnerabilities in the commercial IoT devices that use AP mode or similar approach. We evaluated iTieProbe's efficacy on 9 IoT devices, like IoT cameras, smart plugs, Echo Dot and smart bulbs, and discovered that several of these IoT devices have certain serious threats, like leaking Wi-Fi credential of home router and creating fake IoT device, during the setup of the IoT devices.

相關內容

 Wi-Fi 是 Wi-Fi 聯盟制造商的商標可做為產品的品牌認證,是一個創建于 IEEE 802.11 標準的無線局域網絡(WLAN)設備。

Completely Automated Public Turing Test To Tell Computers and Humans Apart (CAPTCHA) has been implemented on many websites to identify between harmful automated bots and legitimate users. However, the revenue generated by the bots has turned circumventing CAPTCHAs into a lucrative business. Although earlier studies provided information about text-based CAPTCHAs and the associated CAPTCHA-solving services, a lot has changed in the past decade regarding content, suppliers, and solvers of CAPTCHA. We have conducted a comprehensive investigation of the latest third-party CAPTCHA providers and CAPTCHA-solving services' attacks. We dug into the details of CAPTCHA-As-a-Service and the latest CAPTCHA-solving services and carried out adversarial experiments on CAPTCHAs and CAPTCHA solvers. The experiment results show a worrying fact: most latest CAPTCHAs are vulnerable to both human solvers and automated solvers. New CAPTCHAs based on hard AI problems and behavior analysis are needed to stop CAPTCHA solvers.

Interpretability, trustworthiness, and usability are key considerations in high-stake security applications, especially when utilizing deep learning models. While these models are known for their high accuracy, they behave as black boxes in which identifying important features and factors that led to a classification or a prediction is difficult. This can lead to uncertainty and distrust, especially when an incorrect prediction results in severe consequences. Thus, explanation methods aim to provide insights into the inner working of deep learning models. However, most explanation methods provide inconsistent explanations, have low fidelity, and are susceptible to adversarial manipulation, which can reduce model trustworthiness. This paper provides a comprehensive analysis of explainable methods and demonstrates their efficacy in three distinct security applications: anomaly detection using system logs, malware prediction, and detection of adversarial images. Our quantitative and qualitative analysis reveals serious limitations and concerns in state-of-the-art explanation methods in all three applications. We show that explanation methods for security applications necessitate distinct characteristics, such as stability, fidelity, robustness, and usability, among others, which we outline as the prerequisites for trustworthy explanation methods.

Although reinforcement learning (RL) is considered the gold standard for policy design, it may not always provide a robust solution in various scenarios. This can result in severe performance degradation when the environment is exposed to potential disturbances. Adversarial training using a two-player max-min game has been proven effective in enhancing the robustness of RL agents. In this work, we extend the two-player game by introducing an adversarial herd, which involves a group of adversaries, in order to address ($\textit{i}$) the difficulty of the inner optimization problem, and ($\textit{ii}$) the potential over pessimism caused by the selection of a candidate adversary set that may include unlikely scenarios. We first prove that adversarial herds can efficiently approximate the inner optimization problem. Then we address the second issue by replacing the worst-case performance in the inner optimization with the average performance over the worst-$k$ adversaries. We evaluate the proposed method on multiple MuJoCo environments. Experimental results demonstrate that our approach consistently generates more robust policies.

The black-box nature of artificial intelligence (AI) models has been the source of many concerns in their use for critical applications. Explainable Artificial Intelligence (XAI) is a rapidly growing research field that aims to create machine learning models that can provide clear and interpretable explanations for their decisions and actions. In the field of network cybersecurity, XAI has the potential to revolutionize the way we approach network security by enabling us to better understand the behavior of cyber threats and to design more effective defenses. In this survey, we review the state of the art in XAI for cybersecurity in network systems and explore the various approaches that have been proposed to address this important problem. The review follows a systematic classification of network-driven cybersecurity threats and issues. We discuss the challenges and limitations of current XAI methods in the context of cybersecurity and outline promising directions for future research.

In secure machine learning inference, most of the schemes assume that the server is semi-honest (honestly following the protocol but attempting to infer additional information). However, the server may be malicious (e.g., using a low-quality model or deviating from the protocol) in the real world. Although a few studies have considered a malicious server that deviates from the protocol, they ignore the verification of model accuracy (where the malicious server uses a low-quality model) meanwhile preserving the privacy of both the server's model and the client's inputs. To address these issues, we propose \textit{Fusion}, where the client mixes the public samples (which have known query results) with their own samples to be queried as the inputs of multi-party computation to jointly perform the secure inference. Since a server that uses a low-quality model or deviates from the protocol can only produce results that can be easily identified by the client, \textit{Fusion} forces the server to behave honestly, thereby addressing all those aforementioned issues without leveraging expensive cryptographic techniques. Our evaluation indicates that \textit{Fusion} is 48.06$\times$ faster and uses 30.90$\times$ less communication than the existing maliciously secure inference protocol (which currently does not support the verification of the model accuracy). In addition, to show the scalability, we conduct ImageNet-scale inference on the practical ResNet50 model and it costs 8.678 minutes and 10.117 GiB of communication in a WAN setting, which is 1.18$\times$ faster and has 2.64$\times$ less communication than those of the semi-honest protocol.

End-to-end encrypted (E2EE) messaging is an essential first step in providing message confidentiality. Unfortunately, all security guarantees of end-to-end encryption are lost when keys or plaintext are disclosed, either due to device compromise or (sometimes lawful) coercion by powerful adversaries. This work introduces Wink, the first plausibly-deniable messaging system protecting message confidentiality from partial device compromise and compelled key disclosure. Wink can surreptitiously inject hidden messages in standard random coins (e.g., salts, IVs) used by existing E2EE protocols. It does so as part of legitimate secure cryptographic functionality deployed inside the widely-available trusted execution environment (TEE) TrustZone. This results in hidden communication using virtually unchanged existing E2EE messaging apps, as well as strong plausible deniability. Wink has been demonstrated with multiple existing E2EE applications (including Telegram and Signal) with minimal (external) instrumentation, negligible overheads, and crucially, without changing on-wire message formats.

New network architectures, such as the Internet of Things (IoT), 5G, and next-generation (NextG) cellular systems, put forward emerging challenges to the design of future wireless networks toward ultra-high data rate, massive data processing, smart designs, low-cost deployment, reliability and security in dynamic environments. As one of the most promising techniques today, artificial intelligence (AI) is advocated to enable a data-driven paradigm for wireless network design. In this paper, we are motivated to review existing AI techniques and their applications for the full wireless network protocol stack toward improving network performance and security. Our goal is to summarize the current motivation, challenges, and methodology of using AI to enhance wireless networking from the physical to the application layer, and shed light on creating new AI-enabled algorithms, mechanisms, protocols, and system designs for future data-driven wireless networking.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

北京阿比特科技有限公司