亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new method to enhance compositional understanding in pre-trained vision and language models (VLMs) without sacrificing performance in zero-shot multi-modal tasks. Traditional fine-tuning approaches often improve compositional reasoning at the cost of degrading multi-modal capabilities, primarily due to the use of global hard negative (HN) loss, which contrasts global representations of images and texts. This global HN loss pushes HN texts that are highly similar to the original ones, damaging the model's multi-modal representations. To overcome this limitation, we propose Fine-grained Selective Calibrated CLIP (FSC-CLIP), which integrates local hard negative loss and selective calibrated regularization. These innovations provide fine-grained negative supervision while preserving the model's representational integrity. Our extensive evaluations across diverse benchmarks for both compositionality and multi-modal tasks show that FSC-CLIP not only achieves compositionality on par with state-of-the-art models but also retains strong multi-modal capabilities. Code is available at: //github.com/ytaek-oh/fsc-clip.

相關內容

In this paper, we address the critical need for interpretable and uncertainty-aware machine learning models in the context of online learning for high-risk industries, particularly cyber-security. While deep learning and other complex models have demonstrated impressive predictive capabilities, their opacity and lack of uncertainty quantification present significant questions about their trustworthiness. We propose a novel pipeline for online supervised learning problems in cyber-security, that harnesses the inherent interpretability and uncertainty awareness of Additive Gaussian Processes (AGPs) models. Our approach aims to balance predictive performance with transparency while improving the scalability of AGPs, which represents their main drawback, potentially enabling security analysts to better validate threat detection, troubleshoot and reduce false positives, and generally make trustworthy, informed decisions. This work contributes to the growing field of interpretable AI by proposing a class of models that can be significantly beneficial for high-stake decision problems such as the ones typical of the cyber-security domain. The source code is available.

In this paper, we introduce a variant of video object segmentation (VOS) that bridges interactive and semi-automatic approaches, termed Lazy Video Object Segmentation (ziVOS). In contrast, to both tasks, which handle video object segmentation in an off-line manner (i.e., pre-recorded sequences), we propose through ziVOS to target online recorded sequences. Here, we strive to strike a balance between performance and robustness for long-term scenarios by soliciting user feedback's on-the-fly during the segmentation process. Hence, we aim to maximize the tracking duration of an object of interest, while requiring minimal user corrections to maintain tracking over an extended period. We propose a competitive baseline, i.e., Lazy-XMem, as a reference for future works in ziVOS. Our proposed approach uses an uncertainty estimation of the tracking state to determine whether a user interaction is necessary to refine the model's prediction. To quantitatively assess the performance of our method and the user's workload, we introduce complementary metrics alongside those already established in the field. We evaluate our approach using the recently introduced LVOS dataset, which offers numerous long-term videos. Our code is publicly available at //github.com/Vujas-Eteph/LazyXMem.

The pretraining and fine-tuning approach has become the leading technique for various NLP applications. However, recent studies reveal that fine-tuning data, due to their sensitive nature, domain-specific characteristics, and identifiability, pose significant privacy concerns. To help develop more privacy-resilient fine-tuning models, we introduce a novel active privacy auditing framework, dubbed Parsing, designed to identify and quantify privacy leakage risks during the supervised fine-tuning (SFT) of language models (LMs). The framework leverages improved white-box membership inference attacks (MIAs) as the core technology, utilizing novel learning objectives and a two-stage pipeline to monitor the privacy of the LMs' fine-tuning process, maximizing the exposure of privacy risks. Additionally, we have improved the effectiveness of MIAs on large LMs including GPT-2, Llama2, and certain variants of them. Our research aims to provide the SFT community of LMs with a reliable, ready-to-use privacy auditing tool, and to offer valuable insights into safeguarding privacy during the fine-tuning process. Experimental results confirm the framework's efficiency across various models and tasks, emphasizing notable privacy concerns in the fine-tuning process. Project code available for //anonymous.4open.science/r/PARSING-4817/.

In this paper, we propose to estimate model parameters and identify informative source datasets simultaneously for high-dimensional transfer learning problems with the aid of a non-convex penalty, in contrast to the separate useful dataset selection and transfer learning procedures in the existing literature. To numerically solve the non-convex problem with respect to two specific statistical models, namely the sparse linear regression and the generalized low-rank trace regression models, we adopt the difference of convex (DC) programming with the alternating direction method of multipliers (ADMM) procedures. We theoretically justify the proposed algorithm from both statistical and computational perspectives. Extensive numerical results are reported alongside to validate the theoretical assertions. An \texttt{R} package \texttt{MHDTL} is developed to implement the proposed methods.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司