亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite recent success on various tasks, deep learning techniques still perform poorly on adversarial examples with small perturbations. While optimization-based methods for adversarial attacks are well-explored in the field of computer vision, it is impractical to directly apply them in natural language processing due to the discrete nature of the text. To address the problem, we propose a unified framework to extend the existing optimization-based adversarial attack methods in the vision domain to craft textual adversarial samples. In this framework, continuously optimized perturbations are added to the embedding layer and amplified in the forward propagation process. Then the final perturbed latent representations are decoded with a masked language model head to obtain potential adversarial samples. In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD). We find our algorithm effective even using proxy gradient information. Therefore, we perform the more challenging transfer black-box attack and conduct comprehensive experiments to evaluate our attack algorithm with several models on three benchmark datasets. Experimental results demonstrate that our method achieves an overall better performance and produces more fluent and grammatical adversarial samples compared to strong baseline methods. All the code and data will be made public.

相關內容

Recently, CLIP-guided image synthesis has shown appealing performance on adapting a pre-trained source-domain generator to an unseen target domain. It does not require any target-domain samples but only the textual domain labels. The training is highly efficient, e.g., a few minutes. However, existing methods still have some limitations in the quality of generated images and may suffer from the mode collapse issue. A key reason is that a fixed adaptation direction is applied for all cross-domain image pairs, which leads to identical supervision signals. To address this issue, we propose an Image-specific Prompt Learning (IPL) method, which learns specific prompt vectors for each source-domain image. This produces a more precise adaptation direction for every cross-domain image pair, endowing the target-domain generator with greatly enhanced flexibility. Qualitative and quantitative evaluations on various domains demonstrate that IPL effectively improves the quality and diversity of synthesized images and alleviates the mode collapse. Moreover, IPL is independent of the structure of the generative model, such as generative adversarial networks or diffusion models. Code is available at //github.com/Picsart-AI-Research/IPL-Zero-Shot-Generative-Model-Adaptation.

Image segmentation is an important problem in many safety-critical applications. Recent studies show that modern image segmentation models are vulnerable to adversarial perturbations, while existing attack methods mainly follow the idea of attacking image classification models. We argue that image segmentation and classification have inherent differences, and design an attack framework specially for image segmentation models. Our attack framework is inspired by certified radius, which was originally used by defenders to defend against adversarial perturbations to classification models. We are the first, from the attacker perspective, to leverage the properties of certified radius and propose a certified radius guided attack framework against image segmentation models. Specifically, we first adapt randomized smoothing, the state-of-the-art certification method for classification models, to derive the pixel's certified radius. We then focus more on disrupting pixels with relatively smaller certified radii and design a pixel-wise certified radius guided loss, when plugged into any existing white-box attack, yields our certified radius-guided white-box attack. Next, we propose the first black-box attack to image segmentation models via bandit. We design a novel gradient estimator, based on bandit feedback, which is query-efficient and provably unbiased and stable. We use this gradient estimator to design a projected bandit gradient descent (PBGD) attack, as well as a certified radius-guided PBGD (CR-PBGD) attack. We prove our PBGD and CR-PBGD attacks can achieve asymptotically optimal attack performance with an optimal rate. We evaluate our certified-radius guided white-box and black-box attacks on multiple modern image segmentation models and datasets. Our results validate the effectiveness of our certified radius-guided attack framework.

Transferability is the property of adversarial examples to be misclassified by other models than the surrogate model for which they were crafted. Previous research has shown that transferability is substantially increased when the training of the surrogate model has been early stopped. A common hypothesis to explain this is that the later training epochs are when models learn the non-robust features that adversarial attacks exploit. Hence, an early stopped model is more robust (hence, a better surrogate) than fully trained models. We demonstrate that the reasons why early stopping improves transferability lie in the side effects it has on the learning dynamics of the model. We first show that early stopping benefits transferability even on models learning from data with non-robust features. We then establish links between transferability and the exploration of the loss landscape in the parameter space, on which early stopping has an inherent effect. More precisely, we observe that transferability peaks when the learning rate decays, which is also the time at which the sharpness of the loss significantly drops. This leads us to propose RFN, a new approach for transferability that minimizes loss sharpness during training in order to maximize transferability. We show that by searching for large flat neighborhoods, RFN always improves over early stopping (by up to 47 points of transferability rate) and is competitive to (if not better than) strong state-of-the-art baselines.

In an unsupervised attack on variational autoencoders (VAEs), an adversary finds a small perturbation in an input sample that significantly changes its latent space encoding, thereby compromising the reconstruction for a fixed decoder. A known reason for such vulnerability is the distortions in the latent space resulting from a mismatch between approximated latent posterior and a prior distribution. Consequently, a slight change in an input sample can move its encoding to a low/zero density region in the latent space resulting in an unconstrained generation. This paper demonstrates that an optimal way for an adversary to attack VAEs is to exploit a directional bias of a stochastic pullback metric tensor induced by the encoder and decoder networks. The pullback metric tensor of an encoder measures the change in infinitesimal latent volume from an input to a latent space. Thus, it can be viewed as a lens to analyse the effect of input perturbations leading to latent space distortions. We propose robustness evaluation scores using the eigenspectrum of a pullback metric tensor. Moreover, we empirically show that the scores correlate with the robustness parameter $\beta$ of the $\beta-$VAE. Since increasing $\beta$ also degrades reconstruction quality, we demonstrate a simple alternative using \textit{mixup} training to fill the empty regions in the latent space, thus improving robustness with improved reconstruction.

Deep Neural Networks (DNNs) are being used to solve a wide range of problems in many domains including safety-critical domains like self-driving cars and medical imagery. DNNs suffer from vulnerability against adversarial attacks. In the past few years, numerous approaches have been proposed to tackle this problem by training networks using adversarial training. Almost all the approaches generate adversarial examples for the entire training dataset, thus increasing the training time drastically. We show that we can decrease the training time for any adversarial training algorithm by using only a subset of training data for adversarial training. To select the subset, we filter the adversarially-prone samples from the training data. We perform a simple adversarial attack on all training examples to filter this subset. In this attack, we add a small perturbation to each pixel and a few grid lines to the input image. We perform adversarial training on the adversarially-prone subset and mix it with vanilla training performed on the entire dataset. Our results show that when our method-agnostic approach is plugged into FGSM, we achieve a speedup of 3.52x on MNIST and 1.98x on the CIFAR-10 dataset with comparable robust accuracy. We also test our approach on state-of-the-art Free adversarial training and achieve a speedup of 1.2x in training time with a marginal drop in robust accuracy on the ImageNet dataset.

Video compression plays a significant role in IoT devices for the efficient transport of visual data while satisfying all underlying bandwidth constraints. Deep learning-based video compression methods are rapidly replacing traditional algorithms and providing state-of-the-art results on edge devices. However, recently developed adversarial attacks demonstrate that digitally crafted perturbations can break the Rate-Distortion relationship of video compression. In this work, we present a real-world LED attack to target video compression frameworks. Our physically realizable attack, dubbed NetFlick, can degrade the spatio-temporal correlation between successive frames by injecting flickering temporal perturbations. In addition, we propose universal perturbations that can downgrade performance of incoming video without prior knowledge of the contents. Experimental results demonstrate that NetFlick can successfully deteriorate the performance of video compression frameworks in both digital- and physical-settings and can be further extended to attack downstream video classification networks.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司