亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The advances in the digital era have led to rapid dissemination of information. This has also aggravated the spread of misinformation and disinformation. This has potentially serious consequences, such as civil unrest. While fact-checking aims to combat this, manual fact-checking is cumbersome and not scalable. While automated fact-checking approaches exist, they do not operate in real-time and do not always account for spread of misinformation through different modalities. This is particularly important as proactive fact-checking on live streams in real-time can help people be informed of false narratives and prevent catastrophic consequences that may cause civil unrest. This is particularly relevant with the rapid dissemination of information through video on social media platforms or other streams like political rallies and debates. Hence, in this work we develop a platform named \name{}, that can aid in fact-checking live audio streams in real-time. \name{} has a user-friendly interface that displays the claims detected along with their veracity and evidence for live streams with associated speakers for claims from respective segments. The app can be accessed at //livefc.factiverse.ai and a screen recording of the demo can be found at //bit.ly/3WVAoIw.

相關內容

Recent advances in internet-scale video data pretraining have led to the development of text-to-video generative models that can create high-quality videos across a broad range of visual concepts, synthesize realistic motions and render complex objects. Hence, these generative models have the potential to become general-purpose simulators of the physical world. However, it is unclear how far we are from this goal with the existing text-to-video generative models. To this end, we present VideoPhy, a benchmark designed to assess whether the generated videos follow physical commonsense for real-world activities (e.g. marbles will roll down when placed on a slanted surface). Specifically, we curate diverse prompts that involve interactions between various material types in the physical world (e.g., solid-solid, solid-fluid, fluid-fluid). We then generate videos conditioned on these captions from diverse state-of-the-art text-to-video generative models, including open models (e.g., CogVideoX) and closed models (e.g., Lumiere, Dream Machine). Our human evaluation reveals that the existing models severely lack the ability to generate videos adhering to the given text prompts, while also lack physical commonsense. Specifically, the best performing model, CogVideoX-5B, generates videos that adhere to the caption and physical laws for 39.6% of the instances. VideoPhy thus highlights that the video generative models are far from accurately simulating the physical world. Finally, we propose an auto-evaluator, VideoCon-Physics, to assess the performance reliably for the newly released models.

Recent advances in AI have led to significant results in robotic learning, but skills like grasping remain partially solved. Many recent works exploit synthetic grasping datasets to learn to grasp unknown objects. However, those datasets were generated using simple grasp sampling methods using priors. Recently, Quality-Diversity (QD) algorithms have been proven to make grasp sampling significantly more efficient. In this work, we extend QDG-6DoF, a QD framework for generating object-centric grasps, to scale up the production of synthetic grasping datasets. We propose a data augmentation method that combines the transformation of object meshes with transfer learning from previous grasping repertoires. The conducted experiments show that this approach reduces the number of required evaluations per discovered robust grasp by up to 20%. We used this approach to generate QDGset, a dataset of 6DoF grasp poses that contains about 3.5 and 4.5 times more grasps and objects, respectively, than the previous state-of-the-art. Our method allows anyone to easily generate data, eventually contributing to a large-scale collaborative dataset of synthetic grasps.

Existing 3D facial emotion modeling have been constrained by limited emotion classes and insufficient datasets. This paper introduces "Emo3D", an extensive "Text-Image-Expression dataset" spanning a wide spectrum of human emotions, each paired with images and 3D blendshapes. Leveraging Large Language Models (LLMs), we generate a diverse array of textual descriptions, facilitating the capture of a broad spectrum of emotional expressions. Using this unique dataset, we conduct a comprehensive evaluation of language-based models' fine-tuning and vision-language models like Contranstive Language Image Pretraining (CLIP) for 3D facial expression synthesis. We also introduce a new evaluation metric for this task to more directly measure the conveyed emotion. Our new evaluation metric, Emo3D, demonstrates its superiority over Mean Squared Error (MSE) metrics in assessing visual-text alignment and semantic richness in 3D facial expressions associated with human emotions. "Emo3D" has great applications in animation design, virtual reality, and emotional human-computer interaction.

Recent advances in diffusion models have significantly improved text-to-image (T2I) generation, but they often struggle to balance fine-grained precision with high-level control. Methods like ControlNet and T2I-Adapter excel at following sketches by seasoned artists but tend to be overly rigid, replicating unintentional flaws in sketches from novice users. Meanwhile, coarse-grained methods, such as sketch-based abstraction frameworks, offer more accessible input handling but lack the precise control needed for detailed, professional use. To address these limitations, we propose KnobGen, a dual-pathway framework that democratizes sketch-based image generation by seamlessly adapting to varying levels of sketch complexity and user skill. KnobGen uses a Coarse-Grained Controller (CGC) module for high-level semantics and a Fine-Grained Controller (FGC) module for detailed refinement. The relative strength of these two modules can be adjusted through our knob inference mechanism to align with the user's specific needs. These mechanisms ensure that KnobGen can flexibly generate images from both novice sketches and those drawn by seasoned artists. This maintains control over the final output while preserving the natural appearance of the image, as evidenced on the MultiGen-20M dataset and a newly collected sketch dataset.

Recent advances in camera design and imaging technology have enabled the capture of high-quality images using smartphones. However, due to the limited dynamic range of digital cameras, the quality of photographs captured in environments with highly imbalanced lighting often results in poor-quality images. To address this issue, most devices capture multi-exposure frames and then use some multi-exposure fusion method to merge those frames into a final fused image. Nevertheless, most traditional and current deep learning approaches are unsuitable for real-time applications on mobile devices due to their heavy computational and memory requirements. We propose a new method for multi-exposure fusion based on an encoder-decoder deep learning architecture with efficient building blocks tailored for mobile devices. This efficient design makes our model capable of processing 4K resolution images in less than 2 seconds on mid-range smartphones. Our method outperforms state-of-the-art techniques regarding full-reference quality measures and computational efficiency (runtime and memory usage), making it ideal for real-time applications on hardware-constrained devices. Our code is available at: //github.com/LucasKirsten/MobileMEF.

We introduce CoTracker, a transformer-based model that tracks a large number of 2D points in long video sequences. Differently from most existing approaches that track points independently, CoTracker tracks them jointly, accounting for their dependencies. We show that joint tracking significantly improves tracking accuracy and robustness, and allows CoTracker to track occluded points and points outside of the camera view. We also introduce several innovations for this class of trackers, including using token proxies that significantly improve memory efficiency and allow CoTracker to track 70k points jointly and simultaneously at inference on a single GPU. CoTracker is an online algorithm that operates causally on short windows. However, it is trained utilizing unrolled windows as a recurrent network, maintaining tracks for long periods of time even when points are occluded or leave the field of view. Quantitatively, CoTracker substantially outperforms prior trackers on standard point-tracking benchmarks.

Diffusion models have revolted the field of text-to-image generation recently. The unique way of fusing text and image information contributes to their remarkable capability of generating highly text-related images. From another perspective, these generative models imply clues about the precise correlation between words and pixels. In this work, a simple but effective method is proposed to utilize the attention mechanism in the denoising network of text-to-image diffusion models. Without re-training nor inference-time optimization, the semantic grounding of phrases can be attained directly. We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting and our method achieves superior performance to prior methods. In addition, the acquired word-pixel correlation is found to be generalizable for the learned text embedding of customized generation methods, requiring only a few modifications. To validate our discovery, we introduce a new practical task called "personalized referring image segmentation" with a new dataset. Experiments in various situations demonstrate the advantages of our method compared to strong baselines on this task. In summary, our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.

The growing interest in the cislunar domain over the past decade has led to an increasing demand for low-thrust missions to key orbits within this region. These low-thrust missions, typically characterized by long thrust arcs, are highly susceptible to operational disruptions such as unforeseen thruster outages or missed thrust events. Consequently, there is a critical need for efficient trajectory design frameworks which incorporate robustness against such anomalies. In this study, we utilize a robust trajectory design framework to explore the solution space for the Power and Propulsion Element (PPE) module to the Earth-Moon L2 Southern 9:2 Near Rectilinear Halo Orbit. We propose algorithmic enhancements to improve the global search for robust solutions, and present a comprehensive analysis of two approaches: a nonconditional approach which involves a purely random search for robust solutions versus a conditional approach which involves warm-starting the search for robust solutions using the non-robust solutions. Our results indicate that by using non-robust solutions as initial guesses for the robust solutions, it is possible to achieve significant improvements in both the rate of convergence and the robustness of the final solutions.

The introduction of ChatGPT has led to a significant increase in the utilization of Large Language Models (LLMs) for addressing downstream tasks. There's an increasing focus on cost-efficient training and deployment within this context. Low-cost training and deployment of LLMs represent the future development trend. This paper reviews the evolution of large language model training techniques and inference deployment technologies aligned with this emerging trend. The discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning. On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization. It also explores LLMs' utilization and provides insights into their future development.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司