亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over-the-air computation (AirComp) has emerged as a new analog power-domain non-orthogonal multiple access (NOMA) technique for low-latency model/gradient-updates aggregation in federated edge learning (FEEL). By integrating communication and computation into a joint design, AirComp can significantly enhance the communication efficiency, but at the cost of aggregation errors caused by channel fading and noise. This paper studies a particular type of FEEL with federated averaging (FedAvg) and AirComp-based model-update aggregation, namely over-the-air FedAvg (Air-FedAvg). We investigate the transmission power control to combat against the AirComp aggregation errors for enhancing the training accuracy and accelerating the training speed of Air-FedAvg. Towards this end, we first analyze the convergence behavior (in terms of the optimality gap) of Air-FedAvg with aggregation errors at different outer iterations. Then, to enhance the training accuracy, we minimize the optimality gap by jointly optimizing the transmission power control at edge devices and the denoising factors at edge server, subject to a series of power constraints at individual edge devices. Furthermore, to accelerate the training speed, we also minimize the training latency of Air-FedAvg with a given targeted optimality gap, in which learning hyper-parameters including the numbers of outer iterations and local training epochs are jointly optimized with the power control. Finally, numerical results show that the proposed transmission power control policy achieves significantly faster convergence for Air-FedAvg, as compared with benchmark policies with fixed power transmission or per-iteration mean squared error (MSE) minimization. It is also shown that the Air-FedAvg achieves an order-of-magnitude shorter training latency than the conventional FedAvg with digital orthogonal multiple access (OMA-FedAvg).

相關內容

The new generation of wireless technologies, fitness trackers, and devices with embedded sensors can have a big impact on healthcare systems and quality of life. Among the most crucial aspects to consider in these devices are the accuracy of the data produced and power consumption. Many of the events that can be monitored, while apparently simple, may not be easily detectable and recognizable by devices equipped with embedded sensors, especially on devices with low computing capabilities. It is well known that deep learning reduces the study of features that contribute to the recognition of the different target classes. In this work, we present a portable and battery-powered microcontroller-based device applicable to a wobble board. Wobble boards are low-cost equipment that can be used for sensorimotor training to avoid ankle injuries or as part of the rehabilitation process after an injury. The exercise recognition process was implemented through the use of cognitive techniques based on deep learning. To reduce power consumption, we add an adaptivity layer that dynamically manages the device's hardware and software configuration to adapt it to the required operating mode at runtime. Our experimental results show that adjusting the node configuration to the workload at runtime can save up to 60% of the power consumed. On a custom dataset, our optimized and quantized neural network achieves an accuracy value greater than 97% for detecting some specific physical exercises on a wobble board.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

Fairness has emerged as a critical problem in federated learning (FL). In this work, we identify a cause of unfairness in FL -- \emph{conflicting} gradients with large differences in the magnitudes. To address this issue, we propose the federated fair averaging (FedFV) algorithm to mitigate potential conflicts among clients before averaging their gradients. We first use the cosine similarity to detect gradient conflicts, and then iteratively eliminate such conflicts by modifying both the direction and the magnitude of the gradients. We further show the theoretical foundation of FedFV to mitigate the issue conflicting gradients and converge to Pareto stationary solutions. Extensive experiments on a suite of federated datasets confirm that FedFV compares favorably against state-of-the-art methods in terms of fairness, accuracy and efficiency.

Graph neural network (GNN) is widely used for recommendation to model high-order interactions between users and items. Existing GNN-based recommendation methods rely on centralized storage of user-item graphs and centralized model learning. However, user data is privacy-sensitive, and the centralized storage of user-item graphs may arouse privacy concerns and risk. In this paper, we propose a federated framework for privacy-preserving GNN-based recommendation, which can collectively train GNN models from decentralized user data and meanwhile exploit high-order user-item interaction information with privacy well protected. In our method, we locally train GNN model in each user client based on the user-item graph inferred from the local user-item interaction data. Each client uploads the local gradients of GNN to a server for aggregation, which are further sent to user clients for updating local GNN models. Since local gradients may contain private information, we apply local differential privacy techniques to the local gradients to protect user privacy. In addition, in order to protect the items that users have interactions with, we propose to incorporate randomly sampled items as pseudo interacted items for anonymity. To incorporate high-order user-item interactions, we propose a user-item graph expansion method that can find neighboring users with co-interacted items and exchange their embeddings for expanding the local user-item graphs in a privacy-preserving way. Extensive experiments on six benchmark datasets validate that our approach can achieve competitive results with existing centralized GNN-based recommendation methods and meanwhile effectively protect user privacy.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Attributed network embedding aims to learn low-dimensional node representations from both network structure and node attributes. Existing methods can be categorized into two groups: (1) the first group learns two separated node representations from network structure and node attribute respectively and concatenating them together; (2) the other group obtains node representations by translating node attributes into network structure or vice versa. However, both groups have their drawbacks. The first group neglects the correlation between these two types of information, while the second group assumes strong dependence between network structure and node attributes. In this paper, we address attributed network embedding from a novel perspective, i.e., learning representation of a target node via modeling its attributed local subgraph. To achieve this goal, we propose a novel graph auto-encoder framework, namely GraphAE. For a target node, GraphAE first aggregates the attribute information from its attributed local subgrah, obtaining its low-dimensional representation. Next, GraphAE diffuses its representation to nodes in its local subgraph to reconstruct their attribute information. Our proposed perspective transfroms the problem of learning node representations into the problem of modeling the context information manifested in both network structure and node attributes, thus having high capacity to learn good node representations for attributed network. Extensive experimental results on real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art network approaches at the tasks of link prediction and node classification.

Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.

北京阿比特科技有限公司