We study the classic facility location setting, where we are given $n$ clients and $m$ possible facility locations in some arbitrary metric space, and want to choose a location to build a facility. The exact same setting also arises in spatial social choice, where voters are the clients and the goal is to choose a candidate or outcome, with the distance from a voter to an outcome representing the cost of this outcome for the voter (e.g., based on their ideological differences). Unlike most previous work, we do not focus on a single objective to optimize (e.g., the total distance from clients to the facility, or the maximum distance, etc.), but instead attempt to optimize several different objectives simultaneously. More specifically, we consider the $l$-centrum family of objectives, which includes the total distance, max distance, and many others. We present tight bounds on how well any pair of such objectives (e.g., max and sum) can be simultaneously approximated compared to their optimum outcomes. In particular, we show that for any such pair of objectives, it is always possible to choose an outcome which simultaneously approximates both objectives within a factor of $1+\sqrt{2}$, and give a precise characterization of how this factor improves as the two objectives being optimized become more similar. For $q>2$ different centrum objectives, we show that it is always possible to approximate all $q$ of these objectives within a small constant, and that this constant approaches 3 as $q\rightarrow \infty$. Our results show that when optimizing only a few simultaneous objectives, it is always possible to form an outcome which is a significantly better than 3 approximation for all of these objectives.
In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or so-called channels, such as Google Ads, Meta Ads Manager, etc., each of which consists of numerous ad auctions. We study how an advertiser maximizes total conversion (e.g. ad clicks) while satisfying aggregate return-on-investment (ROI) and budget constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally optimize, which individual ad auctions she participates in for each channel, and instead authorizes a channel to procure impressions on her behalf: the advertiser can only utilize two levers on each channel, namely setting a per-channel budget and per-channel target ROI. In this work, we first analyze the effectiveness of each of these levers for solving the advertiser's global multi-channel problem. We show that when an advertiser only optimizes over per-channel ROIs, her total conversion can be arbitrarily worse than what she could have obtained in the global problem. Further, we show that the advertiser can achieve the global optimal conversion when she only optimizes over per-channel budgets. In light of this finding, under a bandit feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions in each channels and how channels procure ads, we present an efficient learning algorithm that produces per-channel budgets whose resulting conversion approximates that of the global optimal problem. Finally, we argue that all our results hold for both single-item and multi-item auctions from which channels procure impressions on advertisers' behalf.
Limbless robots have the potential to maneuver through cluttered environments that conventional robots cannot traverse. As illustrated in their biological counterparts such as snakes and nematodes, limbless locomotors can benefit from interactions with obstacles, yet such obstacle-aided locomotion (OAL) requires properly coordinated high-level self-deformation patterns (gait templates) as well as low-level body adaptation to environments. Most prior work on OAL utilized stereotyped traveling-wave gait templates and relied on local body deformations (e.g., passive body mechanics or decentralized controller parameter adaptation based on force feedback) for obstacle navigation, while gait template design for OAL remains less studied. In this paper, we explore novel gait templates for OAL based on tools derived from geometric mechanics (GM), which thus far has been limited to homogeneous environments. Here, we expand the scope of GM to obstacle-rich environments. Specifically, we establish a model that maps the presence of an obstacle to directional constraints in optimization. In doing so, we identify novel gait templates suitable for sparsely and densely distributed obstacle-rich environments respectively. Open-loop robophysical experiments verify the effectiveness of our identified OAL gaits in obstacle-rich environments. We posit that when such OAL gait templates are augmented with appropriate sensing and feedback controls, limbless locomotors will gain robust function in obstacle rich environments.
Imitation from observation (IfO) is a learning paradigm that consists of training autonomous agents in a Markov Decision Process (MDP) by observing expert demonstrations without access to its actions. These demonstrations could be sequences of environment states or raw visual observations of the environment. Recent work in IfO has focused on this problem in the case of observations of low-dimensional environment states, however, access to these highly-specific observations is unlikely in practice. In this paper, we adopt a challenging, but more realistic problem formulation, learning control policies that operate on a learned latent space with access only to visual demonstrations of an expert completing a task. We present BootIfOL, an IfO algorithm that aims to learn a reward function that takes an agent trajectory and compares it to an expert, providing rewards based on similarity to agent behavior and implicit goal. We consider this reward function to be a distance metric between trajectories of agent behavior and learn it via contrastive learning. The contrastive learning objective aims to closely represent expert trajectories and to distance them from non-expert trajectories. The set of non-expert trajectories used in contrastive learning is made progressively more complex by bootstrapping from roll-outs of the agent learned through RL using the current reward function. We evaluate our approach on a variety of control tasks showing that we can train effective policies using a limited number of demonstrative trajectories, greatly improving on prior approaches that consider raw observations.
Event-based cameras are raising interest within the computer vision community. These sensors operate with asynchronous pixels, emitting events, or "spikes", when the luminance change at a given pixel since the last event surpasses a certain threshold. Thanks to their inherent qualities, such as their low power consumption, low latency and high dynamic range, they seem particularly tailored to applications with challenging temporal constraints and safety requirements. Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs), since the coupling of an asynchronous sensor with neuromorphic hardware can yield real-time systems with minimal power requirements. In this work, we seek to develop one such system, using both event sensor data from the DSEC dataset and spiking neural networks to estimate optical flow for driving scenarios. We propose a U-Net-like SNN which, after supervised training, is able to make dense optical flow estimations. To do so, we encourage both minimal norm for the error vector and minimal angle between ground-truth and predicted flow, training our model with back-propagation using a surrogate gradient. In addition, the use of 3d convolutions allows us to capture the dynamic nature of the data by increasing the temporal receptive fields. Upsampling after each decoding stage ensures that each decoder's output contributes to the final estimation. Thanks to separable convolutions, we have been able to develop a light model (when compared to competitors) that can nonetheless yield reasonably accurate optical flow estimates.
In computed tomography (CT), the projection geometry used for data acquisition needs to be known precisely to obtain a clear reconstructed image. Rigid patient motion is a cause for misalignment between measured data and employed geometry. Commonly, such motion is compensated by solving an optimization problem that, e.g., maximizes the quality of the reconstructed image with respect to the projection geometry. So far, gradient-free optimization algorithms have been utilized to find the solution for this problem. Here, we show that gradient-based optimization algorithms are a possible alternative and compare the performance to their gradient-free counterparts on a benchmark motion compensation problem. Gradient-based algorithms converge substantially faster while being comparable to gradient-free algorithms in terms of capture range and robustness to the number of free parameters. Hence, gradient-based optimization is a viable alternative for the given type of problems.
Boolean functions are mathematical objects with numerous applications in domains like coding theory, cryptography, and telecommunications. Finding Boolean functions with specific properties is a complex combinatorial optimization problem where the search space grows super-exponentially with the number of input variables. One common property of interest is the nonlinearity of Boolean functions. Constructing highly nonlinear Boolean functions is difficult as it is not always known what nonlinearity values can be reached in practice. In this paper, we investigate the effects of the genetic operators for bit-string encoding in optimizing nonlinearity. While several mutation and crossover operators have commonly been used, the link between the genotype they operate on and the resulting phenotype changes is mostly obscure. By observing the range of possible changes an operator can provide, as well as relative probabilities of specific transitions in the objective space, one can use this information to design a more effective combination of genetic operators. The analysis reveals interesting insights into operator effectiveness and indicates how algorithm design may improve convergence compared to an operator-agnostic genetic algorithm.
Composition theorems are general and powerful tools that facilitate privacy accounting across multiple data accesses from per-access privacy bounds. However they often result in weaker bounds compared with end-to-end analysis. Two popular tools that mitigate that are the exponential mechanism (or report noisy max) and the sparse vector technique. They were generalized in a couple of recent private selection/test frameworks, including the work by Liu and Talwar (STOC 2019), and Papernot and Steinke (ICLR 2022). In this work, we first present an alternative framework for private selection and testing with a simpler privacy proof and equally-good utility guarantee. Second, we observe that the private selection framework (both previous ones and ours) can be applied to improve the accuracy/confidence trade-off for many fundamental privacy-preserving data-analysis tasks, including query releasing, top-$k$ selection, and stable selection. Finally, for online settings, we apply the private testing to design a mechanism for adaptive query releasing, which improves the sample complexity dependence on the confidence parameter for the celebrated private multiplicative weights algorithm of Hardt and Rothblum (FOCS 2010).
Deep Neural Networks (DNNs) are widely used for their ability to effectively approximate large classes of functions. This flexibility, however, makes the strict enforcement of constraints on DNNs an open problem. Here we present a framework that, under mild assumptions, allows the exact enforcement of constraints on parameterized sets of functions such as DNNs. Instead of imposing "soft'' constraints via additional terms in the loss, we restrict (a subset of) the DNN parameters to a submanifold on which the constraints are satisfied exactly throughout the entire training procedure. We focus on constraints that are outside the scope of equivariant networks used in Geometric Deep Learning. As a major example of the framework, we restrict filters of a Convolutional Neural Network (CNN) to be wavelets, and apply these wavelet networks to the task of contour prediction in the medical domain.
Modern machine learning models are often constructed taking into account multiple objectives, e.g., minimizing inference time while also maximizing accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return such candidate models, and the approximation of the Pareto front is used to assess their performance. In practice, we also want to measure generalization when moving from the validation to the test set. However, some of the models might no longer be Pareto-optimal which makes it unclear how to quantify the performance of the MHPO method when evaluated on the test set. To resolve this, we provide a novel evaluation protocol that allows measuring the generalization performance of MHPO methods and studying its capabilities for comparing two optimization experiments.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.