We present explicit formulae for parameterized families of distributions of the number of nonoverlapping words and increasing nonverlapping words in independent and identically distributed (i.i.d.) finite valued random variables, respectively. Then we provide an explicit formula for a parameterized family of distributions of the number of runs, which generalizes \(\mu\)-overlapping distributions for \(\mu\geq 0\) in i.i.d.~binary valued random variables. We also demonstrate that of runs whose size are exactly given numbers (Mood 1940). The number of arithmetic operations required to compute our formula for generalized distributions of runs for fixed number of parameters and fixed range is linear order of sample size.
We present an isogeometric collocation method for solving the biharmonic equation over planar bilinearly parameterized multi-patch domains. The developed approach is based on the use of the globally $C^4$-smooth isogeometric spline space [34] to approximate the solution of the considered partial differential equation, and proposes as collocation points two different choices, namely on the one hand the Greville points and on the other hand the so-called superconvergent points. Several examples demonstrate the potential of our collocation method for solving the biharmonic equation over planar multi-patch domains, and numerically study the convergence behavior of the two types of collocation points with respect to the $L^2$-norm as well as to equivalents of the $H^s$-seminorms for $1 \leq s \leq 4$. In the studied case of spline degree $p=9$, the numerical results indicate in case of the Greville points a convergence of order $\mathcal{O}(h^{p-3})$ independent of the considered (semi)norm, and show in case of the superconvergent points an improved convergence of order $\mathcal{O}(h^{p-2})$ for all (semi)norms except for the equivalent of the $H^4$-seminorm, where the order $\mathcal{O}(h^{p-3})$ is anyway optimal.
A posteriori reduced-order models, e.g. proper orthogonal decomposition, are essential to affordably tackle realistic parametric problems. They rely on a trustful training set, that is a family of full-order solutions (snapshots) representative of all possible outcomes of the parametric problem. Having such a rich collection of snapshots is not, in many cases, computationally viable. A strategy for data augmentation, designed for parametric laminar incompressible flows, is proposed to enrich poorly populated training sets. The goal is to include in the new, artificial snapshots emerging features, not present in the original basis, that do enhance the quality of the reduced-order solution. The methodologies devised are based on exploiting basic physical principles, such as mass and momentum conservation, to devise physically-relevant, artificial snapshots at a fraction of the cost of additional full-order solutions. Interestingly, the numerical results show that the ideas exploiting only mass conservation (i.e., incompressibility) are not producing significant added value with respect to the standard linear combinations of snapshots. Conversely, accounting for the linearized momentum balance via the Oseen equation does improve the quality of the resulting approximation and therefore is an effective data augmentation strategy in the framework of viscous incompressible laminar flows.
Robotic systems are complex cyber-physical systems (CPS) commonly equipped with multiple sensors and effectors. Recent simulation methods enable the Digital Twin (DT) concept realisation. However, DT employment in robotic system development, e.g. in-development testing, is unclear. During the system development, its parts evolve from simulated mockups to physical parts which run software deployed on the actual hardware. Therefore, a design tool and a flexible development procedure ensuring the integrity of the simulated and physical parts are required. We aim to maximise the integration between a CPS's simulated and physical parts in various setups. The better integration, the better simulation-based testing coverage of the physical part (hardware and software). We propose a Domain Specification Language (DSL) based on Systems Modeling Language (SysML) that we refer to as SPSysML (Simulation-Physical System Modeling Language). SPSysML defines the taxonomy of a Simulation-Physical System (SPSys), being a CPS consisting of at least a physical or simulated part. In particular, the simulated ones can be DTs. We propose a SPSys Development Procedure (SPSysDP) that enables the maximisation of the simulation-physical integrity of SPSys by evaluating the proposed factors. SPSysDP is used to develop a complex robotic system for the INCARE project. In subsequent iterations of SPSysDP, the simulation-physical integrity of the system is maximised. As a result, the system model consists of fewer components, and a greater fraction of the system components are shared between various system setups. We implement and test the system with popular frameworks, Robot Operating System (ROS) and Gazebo simulator. SPSysML with SPSysDP enables the design of SPSys (including DT and CPS), multi-setup system development featuring maximised integrity between simulation and physical parts in its setups.
Many interesting physical problems described by systems of hyperbolic conservation laws are stiff, and thus impose a very small time-step because of the restrictive CFL stability condition. In this case, one can exploit the superior stability properties of implicit time integration which allows to choose the time-step only from accuracy requirements, and thus avoid the use of small time-steps. We discuss an efficient framework to devise high order implicit schemes for stiff hyperbolic systems without tailoring it to a specific problem. The nonlinearity of high order schemes, due to space- and time-limiting procedures which control nonphysical oscillations, makes the implicit time integration difficult, e.g.~because the discrete system is nonlinear also on linear problems. This nonlinearity of the scheme is circumvented as proposed in (Puppo et al., Comm.~Appl.~Math.~\& Comput., 2023) for scalar conservation laws, where a first order implicit predictor is computed to freeze the nonlinear coefficients of the essentially non-oscillatory space reconstruction, and also to assist limiting in time. In addition, we propose a novel conservative flux-centered a-posteriori time-limiting procedure using numerical entropy indicators to detect troubled cells. The numerical tests involve classical and artificially devised stiff problems using the Euler's system of gas-dynamics.
We provide a non-unit disk framework to solve combinatorial optimization problems such as Maximum Cut (Max-Cut) and Maximum Independent Set (MIS) on a Rydberg quantum annealer. Our setup consists of a many-body interacting Rydberg system where locally controllable light shifts are applied to individual qubits in order to map the graph problem onto the Ising spin model. Exploiting the flexibility that optical tweezers offer in terms of spatial arrangement, our numerical simulations implement the local-detuning protocol while globally driving the Rydberg annealer to the desired many-body ground state, which is also the solution to the optimization problem. Using optimal control methods, these solutions are obtained for prototype graphs with varying sizes at time scales well within the system lifetime and with approximation ratios close to one. The non-blockade approach facilitates the encoding of graph problems with specific topologies that can be realized in two-dimensional Rydberg configurations and is applicable to both unweighted as well as weighted graphs. A comparative analysis with fast simulated annealing is provided which highlights the advantages of our scheme in terms of system size, hardness of the graph, and the number of iterations required to converge to the solution.
Most categorical models for dependent types have traditionally been heavily set based: contexts form a category, and for each we have a set of types in said context -- and for each type a set of terms of said type. This is the case for categories with families, categories with attributes, and natural models; in particular, all of them can be traced back to certain discrete Grothendieck fibrations. We extend this intuition to the case of general, non necessarily discrete, fibrations, so that over a given context one has not only a set but a category of types. We argue that the added structure can be attributed to a notion of subtyping that shares many features with that of coercive subtyping, in the sense that it is the product of thinking about subtyping as an abbreviation mechanism: we say that a given type $A'$ is a subtype of $A$ if there is a unique coercion from $A'$ to $A$. Whenever we need a term of type $A$, then, it suffices to have a term of type $A'$, which we can `plug-in' into $A$. For this version of subtyping we provide rules, coherences, and explicit models, and we compare and contrast it to coercive subtyping as introduced by Z. Luo and others. We conclude by suggesting how the tools we present can be employed in finding appropriate rules relating subtyping and certain type constructors.
Deep neural networks (DNNs) often fail silently with over-confident predictions on out-of-distribution (OOD) samples, posing risks in real-world deployments. Existing techniques predominantly emphasize either the feature representation space or the gradient norms computed with respect to DNN parameters, yet they overlook the intricate gradient distribution and the topology of classification regions. To address this gap, we introduce GRadient-aware Out-Of-Distribution detection in interpolated manifolds (GROOD), a novel framework that relies on the discriminative power of gradient space to distinguish between in-distribution (ID) and OOD samples. To build this space, GROOD relies on class prototypes together with a prototype that specifically captures OOD characteristics. Uniquely, our approach incorporates a targeted mix-up operation at an early intermediate layer of the DNN to refine the separation of gradient spaces between ID and OOD samples. We quantify OOD detection efficacy using the distance to the nearest neighbor gradients derived from the training set, yielding a robust OOD score. Experimental evaluations substantiate that the introduction of targeted input mix-upamplifies the separation between ID and OOD in the gradient space, yielding impressive results across diverse datasets. Notably, when benchmarked against ImageNet-1k, GROOD surpasses the established robustness of state-of-the-art baselines. Through this work, we establish the utility of leveraging gradient spaces and class prototypes for enhanced OOD detection for DNN in image classification.
Partitioned neural network functions are used to approximate the solution of partial differential equations. The problem domain is partitioned into non-overlapping subdomains and the partitioned neural network functions are defined on the given non-overlapping subdomains. Each neural network function then approximates the solution in each subdomain. To obtain the convergent neural network solution, certain continuity conditions on the partitioned neural network functions across the subdomain interface need to be included in the loss function, that is used to train the parameters in the neural network functions. In our work, by introducing suitable interface values, the loss function is reformulated into a sum of localized loss functions and each localized loss function is used to train the corresponding local neural network parameters. In addition, to accelerate the neural network solution convergence, the localized loss function is enriched with an augmented Lagrangian term, where the interface condition and the boundary condition are enforced as constraints on the local solutions by using Lagrange multipliers. The local neural network parameters and Lagrange multipliers are then found by optimizing the localized loss function. To take the advantage of the localized loss function for the parallel computation, an iterative algorithm is also proposed. For the proposed algorithms, their training performance and convergence are numerically studied for various test examples.
A high-order, degree-adaptive hybridizable discontinuous Galerkin (HDG) method is presented for two-fluid incompressible Stokes flows, with boundaries and interfaces described using NURBS. The NURBS curves are embedded in a fixed Cartesian grid, yielding an unfitted HDG scheme capable of treating the exact geometry of the boundaries/interfaces, circumventing the need for fitted, high-order, curved meshes. The framework of the NURBS-enhanced finite element method (NEFEM) is employed for accurate quadrature along immersed NURBS and in elements cut by NURBS curves. A Nitsche's formulation is used to enforce Dirichlet conditions on embedded surfaces, yielding unknowns only on the mesh skeleton as in standard HDG, without introducing any additional degree of freedom on non-matching boundaries/interfaces. The resulting unfitted HDG-NEFEM method combines non-conforming meshes, exact NURBS geometry and high-order approximations to provide high-fidelity results on coarse meshes, independent of the geometric features of the domain. Numerical examples illustrate the optimal accuracy and robustness of the method, even in the presence of badly cut cells or faces, and its suitability to simulate microfluidic systems from CAD geometries.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.