We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal Polyak-Lojasiewicz assumption that is faster than random selection and independent of the problem dimension $n$. We then consider minimizing with both a summation constraint and bound constraints, as arises in the support vector machine dual problem. Existing greedy rules for this setting either guarantee trivial progress only or require $O(n^2)$ time to compute. We show that bound- and summation-constrained steepest descent in the L1-norm guarantees more progress per iteration than previous rules and can be computed in only $O(n \log n)$ time.
Dichotomy theorems, which characterize the conditions under which a problem can be solved efficiently, have helped identify important tractability borders for as probabilistic query evaluation, view maintenance, query containment (among many more problems). However, dichotomy theorems for many such problems remain elusive under key settings such as bag semantics or for queries with self-joins. This work aims to unearth dichotomies for fundamental problems in reverse data management and knowledge representation. We use a novel approach to discovering dichotomies: instead of creating dedicated algorithms for easy (PTIME) and hard cases (NP-complete), we devise unified algorithms that are guaranteed to terminate in PTIME for easy cases. Using this approach, we discovered new tractable cases for the problem of minimal factorization of provenance formulas as well as dichotomies under bag semantics for the problems of resilience and causal responsibility
We address the problem of constraint encoding explosion which hinders the applicability of state merging in symbolic execution. Specifically, our goal is to reduce the number of disjunctions and if-then-else expressions introduced during state merging. The main idea is to dynamically partition the symbolic states into merging groups according to a similar uniform structure detected in their path constraints, which allows to efficiently encode the merged path constraint and memory using quantifiers. To address the added complexity of solving quantified constraints, we propose a specialized solving procedure that reduces the solving time in many cases. Our evaluation shows that our approach can lead to significant performance gains.
The rapid growth of deep learning (DL) has spurred interest in enhancing log-based anomaly detection. This approach aims to extract meaning from log events (log message templates) and develop advanced DL models for anomaly detection. However, these DL methods face challenges like heavy reliance on training data, labels, and computational resources due to model complexity. In contrast, traditional machine learning and data mining techniques are less data-dependent and more efficient but less effective than DL. To make log-based anomaly detection more practical, the goal is to enhance traditional techniques to match DL's effectiveness. Previous research in a different domain (linking questions on Stack Overflow) suggests that optimized traditional techniques can rival state-of-the-art DL methods. Drawing inspiration from this concept, we conducted an empirical study. We optimized the unsupervised PCA (Principal Component Analysis), a traditional technique, by incorporating lightweight semantic-based log representation. This addresses the issue of unseen log events in training data, enhancing log representation. Our study compared seven log-based anomaly detection methods, including four DL-based, two traditional, and the optimized PCA technique, using public and industrial datasets. Results indicate that the optimized unsupervised PCA technique achieves similar effectiveness to advanced supervised/semi-supervised DL methods while being more stable with limited training data and resource-efficient. This demonstrates the adaptability and strength of traditional techniques through small yet impactful adaptations.
Change blindness is a phenomenon where an individual fails to notice alterations in a visual scene when a change occurs during a brief interruption or distraction. Understanding this phenomenon is specifically important for the technique that uses a visual stimulus, such as Virtual Reality (VR) or Augmented Reality (AR). Previous research had primarily focused on 2D environments or conducted limited controlled experiments in 3D immersive environments. In this paper, we design and conduct two formal user experiments to investigate the effects of different visual attention-disrupting conditions (Flickering and Head-Turning) and object alternative conditions (Removal, Color Alteration, and Size Alteration) on change blindness detection in VR and AR environments. Our results reveal that participants detected changes more quickly and had a higher detection rate with Flickering compared to Head-Turning. Furthermore, they spent less time detecting changes when an object disappeared compared to changes in color or size. Additionally, we provide a comparison of the results between VR and AR environments.
Existing FL-based approaches are based on the unrealistic assumption that the data on the client-side is fully annotated with ground truths. Furthermore, it is a great challenge how to improve the training efficiency while ensuring the detection accuracy in the highly heterogeneous and resource-constrained IoT networks. Meanwhile, the communication cost between clients and the server is also a problem that can not be ignored. Therefore, in this paper, we propose a Federated Semi-Supervised and Semi-Asynchronous (FedS3A) learning for anomaly detection in IoT networks. First, we consider a more realistic assumption that labeled data is only available at the server, and pseudo-labeling is utilized to implement federated semi-supervised learning, in which a dynamic weight of supervised learning is exploited to balance the supervised learning at the server and unsupervised learning at clients. Then, we propose a semi-asynchronous model update and staleness tolerant distribution scheme to achieve a trade-off between the round efficiency and detection accuracy. Meanwhile, the staleness of local models and the participation frequency of clients are considered to adjust their contributions to the global model. In addition, a group-based aggregation function is proposed to deal with the non-IID distribution of the data. Finally, the difference transmission based on the sparse matrix is adopted to reduce the communication cost. Extensive experimental results show that FedS3A can achieve greater than 98% accuracy even when the data is non-IID and is superior to the classic FL-based algorithms in terms of both detection performance and round efficiency, achieving a win-win situation. Meanwhile, FedS3A successfully reduces the communication cost by higher than 50%.
The problem of system identification for the Kalman filter, relying on the expectation-maximization (EM) procedure to learn the underlying parameters of a dynamical system, has largely been studied assuming that observations are sampled at equally-spaced time points. However, in many applications this is a restrictive and unrealistic assumption. This paper addresses system identification for the continuous-discrete filter, with the aim of generalizing learning for the Kalman filter by relying on a solution to a continuous-time It\^o stochastic differential equation (SDE) for the latent state and covariance dynamics. We introduce a novel two-filter, analytical form for the posterior with a Bayesian derivation, which yields analytical updates which do not require the forward-pass to be pre-computed. Using this analytical and efficient computation of the posterior, we provide an EM procedure which estimates the parameters of the SDE, naturally incorporating irregularly sampled measurements. Generalizing the learning of latent linear dynamical systems (LDS) to continuous-time may extend the use of the hybrid Kalman filter to data which is not regularly sampled or has intermittent missing values, and can extend the power of non-linear system identification methods such as switching LDS (SLDS), which rely on EM for the linear discrete-time Kalman filter as a sub-unit for learning locally linearized behavior of a non-linear system. We apply the method by learning the parameters of a latent, multivariate Fokker-Planck SDE representing a toggle-switch genetic circuit using biologically realistic parameters, and compare the efficacy of learning relative to the discrete-time Kalman filter as the step-size irregularity and spectral-radius of the dynamics-matrix increases.
One-class classification (OCC) is a longstanding method for anomaly detection. With the powerful representation capability of the pre-trained backbone, OCC methods have witnessed significant performance improvements. Typically, most of these OCC methods employ transfer learning to enhance the discriminative nature of the pre-trained backbone's features, thus achieving remarkable efficacy. While most current approaches emphasize feature transfer strategies, we argue that the optimization objective space within OCC methods could also be an underlying critical factor influencing performance. In this work, we conducted a thorough investigation into the optimization objective of OCC. Through rigorous theoretical analysis and derivation, we unveil a key insights: any space with the suitable norm can serve as an equivalent substitute for the hypersphere center, without relying on the distribution assumption of training samples. Further, we provide guidelines for determining the feasible domain of norms for the OCC optimization objective. This novel insight sparks a simple and data-agnostic deep one-class classification method. Our method is straightforward, with a single 1x1 convolutional layer as a trainable projector and any space with suitable norm as the optimization objective. Extensive experiments validate the reliability and efficacy of our findings and the corresponding methodology, resulting in state-of-the-art performance in both one-class classification and industrial vision anomaly detection and segmentation tasks.
The regression of a functional response on a set of scalar predictors can be a challenging task, especially if there is a large number of predictors, or the relationship between those predictors and the response is nonlinear. In this work, we propose a solution to this problem: a feed-forward neural network (NN) designed to predict a functional response using scalar inputs. First, we transform the functional response to a finite-dimensional representation and construct an NN that outputs this representation. Then, we propose to modify the output of an NN via the objective function and introduce different objective functions for network training. The proposed models are suited for both regularly and irregularly spaced data, and a roughness penalty can be further applied to control the smoothness of the predicted curve. The difficulty in implementing both those features lies in the definition of objective functions that can be back-propagated. In our experiments, we demonstrate that our model outperforms the conventional function-on-scalar regression model in multiple scenarios while computationally scaling better with the dimension of the predictors.
Temporal graphs represent interactions between entities over time. Deciding whether entities can reach each other through temporal paths is useful for various applications such as in communication networks and epidemiology. Previous works have studied the scenario in which addition of new interactions can happen at any point in time. A known strategy maintains, incrementally, a Timed Transitive Closure by using a dynamic data structure composed of $O(n^2)$ binary search trees containing non-nested time intervals. However, space usage for storing these trees grows rapidly as more interactions are inserted. In this paper, we present a compact data structures that represent each tree as two dynamic bit-vectors. In our experiments, we observed that our data structure improves space usage while having similar time performance for incremental updates when comparing with the previous strategy in temporally dense temporal graphs.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.