亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite advancements in LLMs, knowledge-based reasoning remains a longstanding issue due to the fragility of knowledge recall and inference. Existing methods primarily encourage LLMs to autonomously plan and solve problems or to extensively sample reasoning chains without addressing the conceptual and inferential fallacies. Attempting to alleviate inferential fallacies and drawing inspiration from multi-agent collaboration, we present a framework to increase faithfulness and causality for knowledge-based reasoning. Specifically, we propose to employ multiple intelligent agents (i.e., reasoner and causal evaluator) to work collaboratively in a reasoning-and-consensus paradigm for elevated reasoning faithfulness. The reasoners focus on providing solutions with human-like causality to solve open-domain problems. On the other hand, the causal evaluator agent scrutinizes if the answer in a solution is causally deducible from the question and vice versa, with a counterfactual answer replacing the original. According to the extensive and comprehensive evaluations on a variety of knowledge reasoning tasks (e.g., science question answering and commonsense reasoning), our framework outperforms all compared state-of-the-art approaches by large margins.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Firm competition and collusion involve complex dynamics, particularly when considering communication among firms. Such issues can be modeled as problems of complex systems, traditionally approached through experiments involving human subjects or agent-based modeling methods. We propose an innovative framework called Smart Agent-Based Modeling (SABM), wherein smart agents, supported by GPT-4 technologies, represent firms, and interact with one another. We conducted a controlled experiment to study firm price competition and collusion behaviors under various conditions. SABM is more cost-effective and flexible compared to conducting experiments with human subjects. Smart agents possess an extensive knowledge base for decision-making and exhibit human-like strategic abilities, surpassing traditional ABM agents. Furthermore, smart agents can simulate human conversation and be personalized, making them ideal for studying complex situations involving communication. Our results demonstrate that, in the absence of communication, smart agents consistently reach tacit collusion, leading to prices converging at levels higher than the Bertrand equilibrium price but lower than monopoly or cartel prices. When communication is allowed, smart agents achieve a higher-level collusion with prices close to cartel prices. Collusion forms more quickly with communication, while price convergence is smoother without it. These results indicate that communication enhances trust between firms, encouraging frequent small price deviations to explore opportunities for a higher-level win-win situation and reducing the likelihood of triggering a price war. We also assigned different personas to firms to analyze behavioral differences and tested variant models under diverse market structures. The findings showcase the effectiveness and robustness of SABM and provide intriguing insights into competition and collusion.

In modern scientific research, the objective is often to identify which variables are associated with an outcome among a large class of potential predictors. This goal can be achieved by selecting variables in a manner that controls the the false discovery rate (FDR), the proportion of irrelevant predictors among the selections. Knockoff filtering is a cutting-edge approach to variable selection that provides FDR control. Existing knockoff statistics frequently employ linear models to assess relationships between features and the response, but the linearity assumption is often violated in real world applications. This may result in poor power to detect truly prognostic variables. We introduce a knockoff statistic based on the conditional prediction function (CPF), which can pair with state-of-art machine learning predictive models, such as deep neural networks. The CPF statistics can capture the nonlinear relationships between predictors and outcomes while also accounting for correlation between features. We illustrate the capability of the CPF statistics to provide superior power over common knockoff statistics with continuous, categorical, and survival outcomes using repeated simulations. Knockoff filtering with the CPF statistics is demonstrated using (1) a residential building dataset to select predictors for the actual sales prices and (2) the TCGA dataset to select genes that are correlated with disease staging in lung cancer patients.

This paper proposes a sensor data anonymization model that is trained on decentralized data and strikes a desirable trade-off between data utility and privacy, even in heterogeneous settings where the sensor data have different underlying distributions. Our anonymization model, dubbed Blinder, is based on a variational autoencoder and one or multiple discriminator networks trained in an adversarial fashion. We use the model-agnostic meta-learning framework to adapt the anonymization model trained via federated learning to each user's data distribution. We evaluate Blinder under different settings and show that it provides end-to-end privacy protection on two IMU datasets at the cost of increasing privacy loss by up to 4.00% and decreasing data utility by up to 4.24%, compared to the state-of-the-art anonymization model trained on centralized data. We also showcase Blinder's ability to anonymize the radio frequency sensing modality. Our experiments confirm that Blinder can obscure multiple private attributes at once, and has sufficiently low power consumption and computational overhead for it to be deployed on edge devices and smartphones to perform real-time anonymization of sensor data.

Recent years have witnessed much interest in temporal reasoning over knowledge graphs (KG) for complex question answering (QA), but there remains a substantial gap in human capabilities. We explore how to generalize relational graph convolutional networks (RGCN) for temporal KGQA. Specifically, we propose a novel, intuitive and interpretable scheme to modulate the messages passed through a KG edge during convolution, based on the relevance of its associated time period to the question. We also introduce a gating device to predict if the answer to a complex temporal question is likely to be a KG entity or time and use this prediction to guide our scoring mechanism. We evaluate the resulting system, which we call TwiRGCN, on TimeQuestions, a recently released, challenging dataset for multi-hop complex temporal QA. We show that TwiRGCN significantly outperforms state-of-the-art systems on this dataset across diverse question types. Notably, TwiRGCN improves accuracy by 9--10 percentage points for the most difficult ordinal and implicit question types.

In most works on deep incremental learning research, it is assumed that novel samples are pre-identified for neural network retraining. However, practical deep classifiers often misidentify these samples, leading to erroneous predictions. Such misclassifications can degrade model performance. Techniques like open set recognition offer a means to detect these novel samples, representing a significant area in the machine learning domain. In this paper, we introduce a deep class-incremental learning framework integrated with open set recognition. Our approach refines class-incrementally learned features to adapt them for distance-based open set recognition. Experimental results validate that our method outperforms state-of-the-art incremental learning techniques and exhibits superior performance in open set recognition compared to baseline methods.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司