Contextual-LAS (CLAS) has been shown effective in improving Automatic Speech Recognition (ASR) of rare words. It relies on phrase-level contextual modeling and attention-based relevance scoring without explicit contextual constraint which lead to insufficient use of contextual information. In this work, we propose deep CLAS to use contextual information better. We introduce bias loss forcing model to focus on contextual information. The query of bias attention is also enriched to improve the accuracy of the bias attention score. To get fine-grained contextual information, we replace phrase-level encoding with character-level encoding and encode contextual information with conformer rather than LSTM. Moreover, we directly use the bias attention score to correct the output probability distribution of the model. Experiments using the public AISHELL-1 and AISHELL-NER. On AISHELL-1, compared to CLAS baselines, deep CLAS obtains a 65.78% relative recall and a 53.49% relative F1-score increase in the named entity recognition scene.
Scene Text Editing (STE) is a challenging research problem, that primarily aims towards modifying existing texts in an image while preserving the background and the font style of the original text. Despite its utility in numerous real-world applications, existing style-transfer-based approaches have shown sub-par editing performance due to (1) complex image backgrounds, (2) diverse font attributes, and (3) varying word lengths within the text. To address such limitations, in this paper, we propose a novel font-agnostic scene text editing and rendering framework, named FASTER, for simultaneously generating text in arbitrary styles and locations while preserving a natural and realistic appearance and structure. A combined fusion of target mask generation and style transfer units, with a cascaded self-attention mechanism has been proposed to focus on multi-level text region edits to handle varying word lengths. Extensive evaluation on a real-world database with further subjective human evaluation study indicates the superiority of FASTER in both scene text editing and rendering tasks, in terms of model performance and efficiency. Our code will be released upon acceptance.
Chain of thought (CoT) is a reasoning framework that can enhance the performance of Large Language Models (LLMs) on complex inference tasks. In particular, among various studies related to CoT, multi-path inference stands out as a simple yet effective improvement. However, there is no optimal setting for the number of inference paths. Therefore, we have to increase the number of inference paths to obtain better results, which in turn increases the inference cost. To address this limitation, we can utilize question-related role templates to guide LLMs into relevant roles, thereby increasing the possibility of correct inferences for each path and further reducing dependence on the number of inference paths while improving reasoning accuracy. However, placing LLMs into specific roles may reduce their reasoning diversity and performance on a few tasks where role dependence is low. To alleviate the excessive immersion of the LLM into a specific role, we propose Nash CoT by constructing a competitive system on each path that balances the generation from role-specific LLMs' and the general LLMs' generation, thereby ensuring both effective role adoption and diversity in LLM generation further maintaining the performance of multi-path inference while reducing the requirement of the number of inference paths. We evaluate Nash CoT across various inference tasks, including Arabic Reasoning, Commonsense Question Answering, and Symbolic Inference, achieving results that are comparable to or better than those of multi-path CoT with the equal number of inference paths.
While recent years have witnessed the advancement in big data and Artificial Intelligence (AI), it is of much importance to safeguard data privacy and security. As an innovative approach, Federated Learning (FL) addresses these concerns by facilitating collaborative model training across distributed data sources without transferring raw data. However, the challenges of robust security and privacy across decentralized networks catch significant attention in dealing with the distributed data in FL. In this paper, we conduct an extensive survey of the security and privacy issues prevalent in FL, underscoring the vulnerability of communication links and the potential for cyber threats. We delve into various defensive strategies to mitigate these risks, explore the applications of FL across different sectors, and propose research directions. We identify the intricate security challenges that arise within the FL frameworks, aiming to contribute to the development of secure and efficient FL systems.
Momentum-Aided Prompt Optimization (MAPO) enhances the efficiency and efficacy of prompt optimization for Large Language Models (LLMs). Building on ProTeGi, MAPO uses positive natural language "gradients" and a momentum-based extension to refine prompts effectively. By tracking gradient history, MAPO avoids local minima and oscillations. It also utilizes beam search and an Upper Confidence Bound (UCB) algorithm for balanced candidate expansion and selection. Benchmark testing shows that MAPO achieves faster convergence time with fewer API calls and higher F1 scores than ProTeGi, proving it as a robust and scalable solution for automated prompt engineering in LLMs.
The recent success of Vision Transformers has generated significant interest in attention mechanisms and transformer architectures. Although existing methods have proposed spiking self-attention mechanisms compatible with spiking neural networks, they often face challenges in effective deployment on current neuromorphic platforms. This paper introduces a novel model that combines vision transformers with the Locally Competitive Algorithm (LCA) to facilitate efficient neuromorphic deployment. Our experiments show that ViT-LCA achieves higher accuracy on ImageNet-1K dataset while consuming significantly less energy than other spiking vision transformer counterparts. Furthermore, ViT-LCA's neuromorphic-friendly design allows for more direct mapping onto current neuromorphic architectures.
We introduce the Continuous Arcade Learning Environment (CALE), an extension of the well-known Arcade Learning Environment (ALE) [Bellemare et al., 2013]. The CALE uses the same underlying emulator of the Atari 2600 gaming system (Stella), but adds support for continuous actions. This enables the benchmarking and evaluation of continuous-control agents (such as PPO [Schulman et al., 2017] and SAC [Haarnoja et al., 2018]) and value-based agents (such as DQN [Mnih et al., 2015] and Rainbow [Hessel et al., 2018]) on the same environment suite. We provide a series of open questions and research directions that CALE enables, as well as initial baseline results using Soft Actor-Critic. CALE is available as part of the ALE at//github.com/Farama-Foundation/Arcade-Learning-Environment.
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws \cite{kaplan2020scaling,hoffmann2022training}. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.
Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.