亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a growing trend of cyberattacks against Internet of Things (IoT) devices; moreover, the sophistication and motivation of those attacks is increasing. The vast scale of IoT, diverse hardware and software, and being typically placed in uncontrolled environments make traditional IT security mechanisms such as signature-based intrusion detection and prevention systems challenging to integrate. They also struggle to cope with the rapidly evolving IoT threat landscape due to long delays between the analysis and publication of the detection rules. Machine learning methods have shown faster response to emerging threats; however, model training architectures like cloud or edge computing face multiple drawbacks in IoT settings, including network overhead and data isolation arising from the large scale and heterogeneity that characterizes these networks. This work presents an architecture for training unsupervised models for network intrusion detection in large, distributed IoT and Industrial IoT (IIoT) deployments. We leverage Federated Learning (FL) to collaboratively train between peers and reduce isolation and network overhead problems. We build upon it to include an unsupervised device clustering algorithm fully integrated into the FL pipeline to address the heterogeneity issues that arise in FL settings. The architecture is implemented and evaluated using a testbed that includes various emulated IoT/IIoT devices and attackers interacting in a complex network topology comprising 100 emulated devices, 30 switches and 10 routers. The anomaly detection models are evaluated on real attacks performed by the testbed's threat actors, including the entire Mirai malware lifecycle, an additional botnet based on the Merlin command and control server and other red-teaming tools performing scanning activities and multiple attacks targeting the emulated devices.

相關內容

 物聯網,英文名為Internet of Things,可以簡單地理解為物物相連的互聯網。物聯網主要通過各種設備(比如RFID,傳感器,二維碼等)的接口將現實世界的物體連接到互聯網上,或者使它們互相連接,以實現信息的傳遞和處理。互聯網在現實的物理世界之外新建了一個虛擬世界,物聯網將會把兩個世界融為一體。

The Routing Protocol for Low power and Lossy networks (RPL) has been developed by the Internet Engineering Task Force (IETF) standardization body to serve as a part of the 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) standard, a core communication technology for the Internet of Things (IoT) networks. RPL organizes its network in the form of a tree-like structure where a node is configured as the root of the tree while others integrate themselves into that structure based on their relative distance. A value called the Rank is used to define each node's relative position and it is used by other nodes to take their routing decisions. A malicious node can illegitimately claim a closer position to the root by advertising a lower rank value trapping other nodes to forward their traffic through that malicious node. In this study, we show how this behavior can have a detrimental side effect on the network via extensive simulations and propose a new secure objective function to prevent such an attack.

Recent algorithms of time-series anomaly detection have been evaluated by applying a Point Adjustment (PA) protocol. However, the PA protocol has a problem of overestimating the performance of the detection algorithms because it only depends on the number of detected abnormal segments and their size. We propose a novel evaluation protocol called the Point-Adjusted protocol with decay function (PAdf) to evaluate the time-series anomaly detection algorithm by reflecting the following ideal requirements: detect anomalies quickly and accurately without false alarms. This paper theoretically and experimentally shows that the PAdf protocol solves the over- and under-estimation problems of existing protocols such as PA and PA\%K. By conducting re-evaluations of SOTA models in benchmark datasets, we show that the PA protocol only focuses on finding many anomalous segments, whereas the score of the PAdf protocol considers not only finding many segments but also detecting anomalies quickly without delay.

In traditional machine learning, it is trivial to conduct model evaluation since all data samples are managed centrally by a server. However, model evaluation becomes a challenging problem in federated learning (FL), which is called federated evaluation in this work. This is because clients do not expose their original data to preserve data privacy. Federated evaluation plays a vital role in client selection, incentive mechanism design, malicious attack detection, etc. In this paper, we provide the first comprehensive survey of existing federated evaluation methods. Moreover, we explore various applications of federated evaluation for enhancing FL performance and finally present future research directions by envisioning some challenges.

Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

主題: Machine Learning based Anomaly Detection for 5G Networks

摘要:

保護未來網絡將是一個具有挑戰性的領域,因為網絡安全威脅日益增加,物聯網(IoT)造成的攻擊面不斷擴大,網絡異構性增加,虛擬化技術和分布式架構的使用增加。本文提出了SDS(軟件定義安全)作為一種手段來提供一個自動化的、靈活的、可擴展的網絡防御系統。SDS將利用當前機器學習的進步,設計一個使用NAS(神經結構搜索)檢測異常網絡流量的CNN(卷積神經網絡)。SDS可以應用于入侵檢測系統,為5G網絡創建更主動和端到端防御。為了驗證這一假設,我們使用CNN采集并分析了模擬環境中的正常和異常網絡流。該方法的結果是有希望的,因為該模型識別良性流量的準確率為100%,異常流量的檢出率為96.4%。這證明了網絡流分析對各種常見惡意攻擊的有效性,也為檢測加密惡意網絡流量提供了一個可行的選擇。

付費5元查看完整內容

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

北京阿比特科技有限公司