Accurate explicit and implicit product identification in search queries is critical for enhancing user experiences, especially at a company like Adobe which has over 50 products and covers queries across hundreds of tools. In this work, we present a novel approach to training a product classifier from user behavioral data. Our semantic model led to >25% relative improvement in CTR (click through rate) across the deployed surfaces; a >50% decrease in null rate; a 2x increase in the app cards surfaced, which helps drive product visibility.
Data sharing enables critical advances in many research areas and business applications, but it may lead to inadvertent disclosure of sensitive summary statistics (e.g., means or quantiles). Existing literature only focuses on protecting a single confidential quantity, while in practice, data sharing involves multiple sensitive statistics. We propose a novel framework to define, analyze, and protect multi-secret summary statistics privacy in data sharing. Specifically, we measure the privacy risk of any data release mechanism by the worst-case probability of an attacker successfully inferring summary statistic secrets. Given an attacker's objective spanning from inferring a subset to the entirety of summary statistic secrets, we systematically design and analyze tailored privacy metrics. Defining the distortion as the worst-case distance between the original and released data distribution, we analyze the tradeoff between privacy and distortion. Our contribution also includes designing and analyzing data release mechanisms tailored for different data distributions and secret types. Evaluations on real-world data demonstrate the effectiveness of our mechanisms in practical applications.
While the benefits of reconfigurable manufacturing systems (RMS) are well-known, there are still challenges to their development, including, among others, a modular software architecture that enables rapid reconfiguration without much reprogramming effort. Skill-based engineering improves software modularity and increases the reconfiguration potential of RMS. Nevertheless, a skills' composition framework with a focus on frequent and rapid software changes is still missing. The Behavior trees (BTs) framework is a novel approach, which enables intuitive design of modular hierarchical control structures. BTs have been mostly explored from the AI and robotics perspectives, and little work has been done in investigating their potential for composing skills in the manufacturing domain. This paper proposes a framework for skills' composition and execution in skill-based reconfigurable cyber-physical production modules (RCPPMs). It is based on distributed BTs and provides good integration between low-level devices' specific code and AI-based task-oriented frameworks. We have implemented the provided models for the IEC 61499-based distributed automation controllers to show the instantiation of the proposed framework with the specific industrial technology and enable its evaluation by the automation community.
Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs' behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models' general performance.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.
The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.
Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.