亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Organizations execute decisions within business processes on a daily basis whilst having to take into account multiple stakeholders who might require multiple point of views of the same process. Moreover, the complexity of the information systems running these business processes is generally high as they are linked to databases storing all the relevant data and aspects of the processes. Given the presence of multiple objects within an information system which support the processes in their enactment, decisions are naturally influenced by both these perspectives, logged in object-centric process logs. However, the discovery of such decisions from object-centric process logs is not straightforward as it requires to correctly link the involved objects whilst considering the sequential constraints that business processes impose as well as correctly discovering what a decision actually does. This paper proposes the first object-centric decision-mining algorithm called Integrated Object-centric Decision Discovery Algorithm (IODDA). IODDA is able to discover how a decision is structured as well as how a decision is made. Moreover, IODDA is able to discover which activities and object types are involved in the decision-making process. Next, IODDA is demonstrated with the first artificial knowledge-intensive process logs whose log generators are provided to the research community.

相關內容

Processing 是一門開源編程語(yu)言和與之配(pei)套(tao)的集(ji)成(cheng)開發環境(IDE)的名稱(cheng)。Processing 在電子藝術和視覺設計(ji)社區被用來教授編程基礎,并(bing)運用于大量的新媒體和互動藝術作品中(zhong)。

While chain-of-thought prompting (CoT) has the potential to improve the explainability of language model reasoning, it can systematically misrepresent the factors influencing models' behavior--for example, rationalizing answers in line with a user's opinion without mentioning this bias. To mitigate this biased reasoning problem, we introduce bias-augmented consistency training (BCT), an unsupervised fine-tuning scheme that trains models to give consistent reasoning across prompts with and without biasing features. We construct a suite testing nine forms of biased reasoning on seven question-answering tasks, and find that applying BCT to GPT-3.5-Turbo with one bias reduces the rate of biased reasoning by 86% on held-out tasks. Moreover, this model generalizes to other forms of bias, reducing biased reasoning on held-out biases by an average of 37%. As BCT generalizes to held-out biases and does not require gold labels, this method may hold promise for reducing biased reasoning from as-of-yet unknown biases and on tasks where supervision for ground truth reasoning is unavailable.

We examine the linear regression problem in a challenging high-dimensional setting with correlated predictors where the vector of coefficients can vary from sparse to dense. In this setting, we propose a combination of probabilistic variable screening with random projection tools as a viable approach. More specifically, we introduce a new data-driven random projection tailored to the problem at hand and derive a theoretical bound on the gain in expected prediction error over conventional random projections. The variables to enter the projection are screened by accounting for predictor correlation. To reduce the dependence on fine-tuning choices, we aggregate over an ensemble of linear models. A thresholding parameter is introduced to obtain a higher degree of sparsity. Both this parameter and the number of models in the ensemble can be chosen by cross-validation. In extensive simulations, we compare the proposed method with other random projection tools and with classical sparse and dense methods and show that it is competitive in terms of prediction across a variety of scenarios with different sparsity and predictor covariance settings. We also show that the method with cross-validation is able to rank the variables satisfactorily. Finally, we showcase the method on two real data applications.

We consider the task of estimating a low-rank matrix from non-linear and noisy observations. We prove a strong universality result showing that Bayes-optimal performances are characterized by an equivalent Gaussian model with an effective prior, whose parameters are entirely determined by an expansion of the non-linear function. In particular, we show that to reconstruct the signal accurately, one requires a signal-to-noise ratio growing as $N^{\frac 12 (1-1/k_F)}$, where $k_F$ is the first non-zero Fisher information coefficient of the function. We provide asymptotic characterization for the minimal achievable mean squared error (MMSE) and an approximate message-passing algorithm that reaches the MMSE under conditions analogous to the linear version of the problem. We also provide asymptotic errors achieved by methods such as principal component analysis combined with Bayesian denoising, and compare them with Bayes-optimal MMSE.

Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to $\ell_2$-accurate estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Imposing only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results characterize how $\ell_2$ score estimation errors affect the quality of the data generation processes. In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.

Scene depth estimation from paintings can streamline the process of 3D sculpture creation so that visually impaired people appreciate the paintings with tactile sense. However, measuring depth of oriental landscape painting images is extremely challenging due to its unique method of depicting depth and poor preservation. To address the problem of scene depth estimation from oriental landscape painting images, we propose a novel framework that consists of two-step Image-to-Image translation method with CLIP-based image matching at the front end to predict the real scene image that best matches with the given oriental landscape painting image. Then, we employ a pre-trained SOTA depth estimation model for the generated real scene image. In the first step, CycleGAN converts an oriental landscape painting image into a pseudo-real scene image. We utilize CLIP to semantically match landscape photo images with an oriental landscape painting image for training CycleGAN in an unsupervised manner. Then, the pseudo-real scene image and oriental landscape painting image are fed into DiffuseIT to predict a final real scene image in the second step. Finally, we measure depth of the generated real scene image using a pre-trained depth estimation model such as MiDaS. Experimental results show that our approach performs well enough to predict real scene images corresponding to oriental landscape painting images. To the best of our knowledge, this is the first study to measure the depth of oriental landscape painting images. Our research potentially assists visually impaired people in experiencing paintings in diverse ways. We will release our code and resulting dataset.

This paper explores the task of language-agnostic speaker replication, a novel endeavor that seeks to replicate a speaker's voice irrespective of the language they are speaking. Towards this end, we introduce a multi-level attention aggregation approach that systematically probes and amplifies various speaker-specific attributes in a hierarchical manner. Through rigorous evaluations across a wide range of scenarios including seen and unseen speakers conversing in seen and unseen lingua, we establish that our proposed model is able to achieve substantial speaker similarity, and is able to generalize to out-of-domain (OOD) cases.

This work considers a repeated principal-agent bandit game, where the principal can only interact with her environment through the agent. The principal and the agent have misaligned objectives and the choice of action is only left to the agent. However, the principal can influence the agent's decisions by offering incentives which add up to his rewards. The principal aims to iteratively learn an incentive policy to maximize her own total utility. This framework extends usual bandit problems and is motivated by several practical applications, such as healthcare or ecological taxation, where traditionally used mechanism design theories often overlook the learning aspect of the problem. We present nearly optimal (with respect to a horizon $T$) learning algorithms for the principal's regret in both multi-armed and linear contextual settings. Finally, we support our theoretical guarantees through numerical experiments.

Due to the limited and even imbalanced data, semi-supervised semantic segmentation tends to have poor performance on some certain categories, e.g., tailed categories in Cityscapes dataset which exhibits a long-tailed label distribution. Existing approaches almost all neglect this problem, and treat categories equally. Some popular approaches such as consistency regularization or pseudo-labeling may even harm the learning of under-performing categories, that the predictions or pseudo labels of these categories could be too inaccurate to guide the learning on the unlabeled data. In this paper, we look into this problem, and propose a novel framework for semi-supervised semantic segmentation, named adaptive equalization learning (AEL). AEL adaptively balances the training of well and badly performed categories, with a confidence bank to dynamically track category-wise performance during training. The confidence bank is leveraged as an indicator to tilt training towards under-performing categories, instantiated in three strategies: 1) adaptive Copy-Paste and CutMix data augmentation approaches which give more chance for under-performing categories to be copied or cut; 2) an adaptive data sampling approach to encourage pixels from under-performing category to be sampled; 3) a simple yet effective re-weighting method to alleviate the training noise raised by pseudo-labeling. Experimentally, AEL outperforms the state-of-the-art methods by a large margin on the Cityscapes and Pascal VOC benchmarks under various data partition protocols. Code is available at //github.com/hzhupku/SemiSeg-AEL

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司