This paper investigates robust beamforming for system-centric energy efficiency (EE) optimization in the vehicular integrated sensing and communication (ISAC) system, where the mobility of vehicles poses significant challenges to channel estimation. To obtain the optimal beamforming under channel uncertainty, we first formulate an optimization problem for maximizing the system EE under bounded channel estimation errors. Next, fractional programming and semidefinite relaxation (SDR) are utilized to relax the rank-1 constraints. We further use Schur complement and S-Procedure to transform Cramer-Rao bound (CRB) and channel estimation error constraints into convex forms, respectively. Based on the Lagrangian dual function and Karush-Kuhn-Tucker (KKT) conditions, it is proved that the optimal beamforming solution is rank-1. Finally, we present comprehensive simulation results to demonstrate two key findings: 1) the proposed algorithm exhibits a favorable convergence rate, and 2) the approach effectively mitigates the impact of channel estimation errors.
We introduce a framework for intrinsic latent diffusion models operating directly on the surfaces of 3D shapes, with the goal of synthesizing high-quality textures. Our approach is underpinned by two contributions: field latents, a latent representation encoding textures as discrete vector fields on the mesh vertices, and field latent diffusion models, which learn to denoise a diffusion process in the learned latent space on the surface. We consider a single-textured-mesh paradigm, where our models are trained to generate variations of a given texture on a mesh. We show the synthesized textures are of superior fidelity compared those from existing single-textured-mesh generative models. Our models can also be adapted for user-controlled editing tasks such as inpainting and label-guided generation. The efficacy of our approach is due in part to the equivariance of our proposed framework under isometries, allowing our models to seamlessly reproduce details across locally similar regions and opening the door to a notion of generative texture transfer.
Formally verifying the properties of formal systems using a proof assistant requires justifying numerous minor lemmas about capture-avoiding substitution. Despite work on category-theoretic accounts of syntax and variable binding, raw, first-order representations of syntax, the kind considered by many practitioners and compiler frontends, have received relatively little attention. Therefore applications miss out on the benefits of category theory, most notably the promise of reusing formalized infrastructural lemmas between implementations of different systems. Our Coq framework Tealeaves provides libraries of reusable infrastructure for a raw, locally nameless representation and can be extended to other representations in a modular fashion. In this paper we give a string-diagrammatic account of decorated traversable monads (DTMs), the key abstraction implemented by Tealeaves. We define DTMs as monoids of structured endofunctors before proving a representation theorem a la Kleisli, yielding a recursion combinator for finitary tree-like datatypes.
We study polynomial systems with prescribed monomial supports in the Cox rings of toric varieties built from complete polyhedral fans. We present combinatorial formulas for the dimensions of their associated subvarieties under genericity assumptions on the coefficients of the polynomials. Using these formulas, we identify at which degrees generic systems in polytopal algebras form regular sequences. Our motivation comes from sparse elimination theory, where knowing the expected dimension of these subvarieties leads to specialized algorithms and to large speed-ups for solving sparse polynomial systems. As a special case, we classify the degrees at which regular sequences defined by weighted homogeneous polynomials can be found, answering an open question in the Gr\"obner bases literature. We also show that deciding whether a sparse system is generically a regular sequence in a polytopal algebra is hard from the point of view of theoretical computational complexity.
Machine Learning (ML) algorithms are powerful data-driven tools for approximating high-dimensional or non-linear nuisance functions which are useful in practice because the true functional form of the predictors is ex-ante unknown. In this paper, we develop estimators of policy interventions from panel data which allow for non-linear effects of the confounding regressors, and investigate the performance of these estimators using three well-known ML algorithms, specifically, LASSO, classification and regression trees, and random forests. We use Double Machine Learning (DML) (Chernozhukov et al., 2018) for the estimation of causal effects of homogeneous treatments with unobserved individual heterogeneity (fixed effects) and no unobserved confounding by extending Robinson (1988)'s partially linear regression model. We develop three alternative approaches for handling unobserved individual heterogeneity based on extending the within-group estimator, first-difference estimator, and correlated random effect estimator (Mundlak, 1978) for non-linear models. Using Monte Carlo simulations, we find that conventional least squares estimators can perform well even if the data generating process is non-linear, but there are substantial performance gains in terms of bias reduction under a process where the true effect of the regressors is non-linear and discontinuous. However, for the same scenarios, we also find -- despite extensive hyperparameter tuning -- inference to be problematic for both tree-based learners because these lead to highly non-normal estimator distributions and the estimator variance being severely under-estimated. This contradicts the performance of trees in other circumstances and requires further investigation. Finally, we provide an illustrative example of DML for observational panel data showing the impact of the introduction of the national minimum wage in the UK.
Several recent works use positional encodings to extend the receptive fields of graph neural network (GNN) layers equipped with attention mechanisms. These techniques, however, extend receptive fields to the complete graph, at substantial computational cost and risking a change in the inductive biases of conventional GNNs, or require complex architecture adjustments. As a conservative alternative, we use positional encodings to expand receptive fields to $r$-hop neighborhoods. More specifically, our method augments the input graph with additional nodes/edges and uses positional encodings as node and/or edge features. We thus modify graphs before inputting them to a downstream GNN model, instead of modifying the model itself. This makes our method model-agnostic, i.e., compatible with any of the existing GNN architectures. We also provide examples of positional encodings that are lossless with a one-to-one map between the original and the modified graphs. We demonstrate that extending receptive fields via positional encodings and a virtual fully-connected node significantly improves GNN performance and alleviates over-squashing using small $r$. We obtain improvements on a variety of models and datasets and reach competitive performance using traditional GNNs or graph Transformers.
This paper presents a novel solution to address the challenges in achieving energy efficiency and cooperation for collision avoidance in UAV swarms. The proposed method combines Artificial Potential Field (APF) and Particle Swarm Optimization (PSO) techniques. APF provides environmental awareness and implicit coordination to UAVs, while PSO searches for collision-free and energy-efficient trajectories for each UAV in a decentralized manner under the implicit coordination. This decentralized approach is achieved by minimizing a novel cost function that leverages the advantages of the active contour model from image processing. Additionally, future trajectories are predicted by approximating the minima of the novel cost function using calculus of variation, which enables proactive actions and defines the initial conditions for PSO. We propose a two-branch trajectory planning framework that ensures UAVs only change altitudes when necessary for energy considerations. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method in various situations.
We present a novel search optimization solution for approximate nearest neighbor (ANN) search on resource-constrained edge devices. Traditional ANN approaches fall short in meeting the specific demands of real-world scenarios, e.g., skewed query likelihood distribution and search on large-scale indices with a low latency and small footprint. To address these limitations, we introduce two key components: a Query Likelihood Boosted Tree (QLBT) to optimize average search latency for frequently used small datasets, and a two-level approximate search algorithm to enable efficient retrieval with large datasets on edge devices. We perform thorough evaluation on simulated and real data and demonstrate QLBT can significantly reduce latency by 15% on real data and our two-level search algorithm successfully achieve deployable accuracy and latency on a 10 million dataset for edge devices. In addition, we provide a comprehensive protocol for configuring and optimizing on-device search algorithm through extensive empirical studies.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.