Multivariate adaptive regression splines (MARS) is a popular method for nonparametric regression introduced by Friedman in 1991. MARS fits simple nonlinear and non-additive functions to regression data. We propose and study a natural lasso variant of the MARS method. Our method is based on least squares estimation over a convex class of functions obtained by considering infinite-dimensional linear combinations of functions in the MARS basis and imposing a variation based complexity constraint. Our estimator can be computed via finite-dimensional convex optimization, although it is defined as a solution to an infinite-dimensional optimization problem. Under a few standard design assumptions, we prove that our estimator achieves a rate of convergence that depends only logarithmically on dimension and thus avoids the usual curse of dimensionality to some extent. We also show that our method is naturally connected to nonparametric estimation techniques based on smoothness constraints. We implement our method with a cross-validation scheme for the selection of the involved tuning parameter and compare it to the usual MARS method in various simulation and real data settings.
We study the implementation of Automatic Differentiation Variational inference (ADVI) for Bayesian inference on regression models with bridge penalization. The bridge approach uses $\ell_{\alpha}$ norm, with $\alpha \in (0, +\infty)$ to define a penalization on large values of the regression coefficients, which includes the Lasso ($\alpha = 1$) and ridge $(\alpha = 2)$ penalizations as special cases. Full Bayesian inference seamlessly provides joint uncertainty estimates for all model parameters. Although MCMC aproaches are available for bridge regression, it can be slow for large dataset, specially in high dimensions. The ADVI implementation allows the use of small batches of data at each iteration (due to stochastic gradient based algorithms), therefore speeding up computational time in comparison with MCMC. We illustrate the approach on non-parametric regression models with B-splines, although the method works seamlessly for other choices of basis functions. A simulation study shows the main properties of the proposed method.
In this study, we aim to initiate the development of Radiology Foundation Model, termed as RadFM.We consider the construction of foundational models from the perspectives of data, model design, and evaluation thoroughly. Our contribution can be concluded as follows: (i), we construct a large-scale Medical Multi-modal Dataset, MedMD, consisting of 16M 2D and 3D medical scans. To the best of our knowledge, this is the first multi-modal dataset containing 3D medical scans. (ii), We propose an architecture that enables visually conditioned generative pre-training, allowing for the integration of text input interleaved with 2D or 3D medical scans to generate response for diverse radiologic tasks. The model was initially pre-trained on MedMD and subsequently domain-specific fine-tuned on RadMD, a radiologic cleaned version of MedMD, containing 3M radiologic visual-language pairs. (iii), we propose a new evaluation benchmark that comprises five tasks, aiming to comprehensively assess the capability of foundation models in handling practical clinical problems. Our experimental results confirm that RadFM significantly outperforms existing multi-modal foundation models. The codes, data, and model checkpoint will all be made publicly available to promote further research and development in the field.
Recent approximations to backpropagation (BP) have mitigated many of BP's computational inefficiencies and incompatibilities with biology, but important limitations still remain. Moreover, the approximations significantly decrease accuracy in benchmarks, suggesting that an entirely different approach may be more fruitful. Here, grounded on recent theory for Hebbian learning in soft winner-take-all networks, we present multilayer SoftHebb, i.e. an algorithm that trains deep neural networks, without any feedback, target, or error signals. As a result, it achieves efficiency by avoiding weight transport, non-local plasticity, time-locking of layer updates, iterative equilibria, and (self-) supervisory or other feedback signals -- which were necessary in other approaches. Its increased efficiency and biological compatibility do not trade off accuracy compared to state-of-the-art bio-plausible learning, but rather improve it. With up to five hidden layers and an added linear classifier, accuracies on MNIST, CIFAR-10, STL-10, and ImageNet, respectively reach 99.4%, 80.3%, 76.2%, and 27.3%. In conclusion, SoftHebb shows with a radically different approach from BP that Deep Learning over few layers may be plausible in the brain and increases the accuracy of bio-plausible machine learning. Code is available at //github.com/NeuromorphicComputing/SoftHebb.
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
As a field of AI, Machine Reasoning (MR) uses largely symbolic means to formalize and emulate abstract reasoning. Studies in early MR have notably started inquiries into Explainable AI (XAI) -- arguably one of the biggest concerns today for the AI community. Work on explainable MR as well as on MR approaches to explainability in other areas of AI has continued ever since. It is especially potent in modern MR branches, such as argumentation, constraint and logic programming, planning. We hereby aim to provide a selective overview of MR explainability techniques and studies in hopes that insights from this long track of research will complement well the current XAI landscape. This document reports our work in-progress on MR explainability.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.