亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data documents play a central role in recording, presenting, and disseminating data. Despite the proliferation of applications and systems designed to support the analysis, visualization, and communication of data, writing data documents remains a laborious process, requiring a constant back-and-forth between data processing and writing tools. Interviews with eight professionals revealed that their workflows contained numerous tedious, repetitive, and error-prone operations. The key issue that we identified is the lack of persistent connection between text and data. Thus, we developed CrossData, a prototype that treats text-data connections as persistent, interactive, first-class objects. By automatically identifying, establishing, and leveraging text-data connections, CrossData enables rich interactions to assist in the authoring of data documents. An expert evaluation with eight users demonstrated the usefulness of CrossData, showing that it not only reduced the manual effort in writing data documents but also opened new possibilities to bridge the gap between data exploration and writing.

相關內容

Processing 是(shi)一門開源編(bian)程語言和與之配套的集(ji)成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編(bian)程基礎,并運(yun)用于大量的新(xin)媒(mei)體和互動(dong)藝術作品中。

Diffusion models are instrumental in text-to-audio (TTA) generation. Unfortunately, they suffer from slow inference due to an excessive number of queries to the underlying denoising network per generation. To address this bottleneck, we introduce ConsistencyTTA, a framework requiring only a single non-autoregressive network query, thereby accelerating TTA by hundreds of times. We achieve so by proposing "CFG-aware latent consistency model," which adapts consistency generation into a latent space and incorporates classifier-free guidance (CFG) into model training. Moreover, unlike diffusion models, ConsistencyTTA can be finetuned closed-loop with audio-space text-aware metrics, such as CLAP score, to further enhance the generations. Our objective and subjective evaluation on the AudioCaps dataset shows that compared to diffusion-based counterparts, ConsistencyTTA reduces inference computation by 400x while retaining generation quality and diversity.

We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments.

Previous efforts have managed to generate production-ready 3D assets from text or images. However, these methods primarily employ NeRF or 3D Gaussian representations, which are not adept at producing smooth, high-quality geometries required by modern rendering pipelines. In this paper, we propose LDM, a novel feed-forward framework capable of generating high-fidelity, illumination-decoupled textured mesh from a single image or text prompts. We firstly utilize a multi-view diffusion model to generate sparse multi-view inputs from single images or text prompts, and then a transformer-based model is trained to predict a tensorial SDF field from these sparse multi-view image inputs. Finally, we employ a gradient-based mesh optimization layer to refine this model, enabling it to produce an SDF field from which high-quality textured meshes can be extracted. Extensive experiments demonstrate that our method can generate diverse, high-quality 3D mesh assets with corresponding decomposed RGB textures within seconds.

The Audio-Visual Question Answering (AVQA) task holds significant potential for applications. Compared to traditional unimodal approaches, the multi-modal input of AVQA makes feature extraction and fusion processes more challenging. Euclidean space is difficult to effectively represent multi-dimensional relationships of data. Especially when extracting and processing data with a tree structure or hierarchical structure, Euclidean space is not suitable as an embedding space. Additionally, the self-attention mechanism in Transformers is effective in capturing the dynamic relationships between elements in a sequence. However, the self-attention mechanism's limitations in window modeling and quadratic computational complexity reduce its effectiveness in modeling long sequences. To address these limitations, we propose SHMamba: Structured Hyperbolic State Space Model to integrate the advantages of hyperbolic geometry and state space models. Specifically, SHMamba leverages the intrinsic properties of hyperbolic space to represent hierarchical structures and complex relationships in audio-visual data. Meanwhile, the state space model captures dynamic changes over time by globally modeling the entire sequence. Furthermore, we introduce an adaptive curvature hyperbolic alignment module and a cross fusion block to enhance the understanding of hierarchical structures and the dynamic exchange of cross-modal information, respectively. Extensive experiments demonstrate that SHMamba outperforms previous methods with fewer parameters and computational costs. Our learnable parameters are reduced by 78.12\%, while the average performance improves by 2.53\%. Experiments show that our method demonstrates superiority among all current major methods and is more suitable for practical application scenarios.

This paper presents a video inversion approach for zero-shot video editing, which models the input video with low-rank representation during the inversion process. The existing video editing methods usually apply the typical 2D DDIM inversion or naive spatial-temporal DDIM inversion before editing, which leverages time-varying representation for each frame to derive noisy latent. Unlike most existing approaches, we propose a Spatial-Temporal Expectation-Maximization (STEM) inversion, which formulates the dense video feature under an expectation-maximization manner and iteratively estimates a more compact basis set to represent the whole video. Each frame applies the fixed and global representation for inversion, which is more friendly for temporal consistency during reconstruction and editing. Extensive qualitative and quantitative experiments demonstrate that our STEM inversion can achieve consistent improvement on two state-of-the-art video editing methods. Project page: //stem-inv.github.io/page/.

Music scores are written representations of music and contain rich information about musical components. The visual information on music scores includes notes, rests, staff lines, clefs, dynamics, and articulations. This visual information in music scores contains more semantic information than audio and symbolic representations of music. Previous music score datasets have limited sizes and are mainly designed for optical music recognition (OMR). There is a lack of research on creating a large-scale benchmark dataset for music modeling and generation. In this work, we propose MusicScore, a large-scale music score dataset collected and processed from the International Music Score Library Project (IMSLP). MusicScore consists of image-text pairs, where the image is a page of a music score and the text is the metadata of the music. The metadata of MusicScore is extracted from the general information section of the IMSLP pages. The metadata includes rich information about the composer, instrument, piece style, and genre of the music pieces. MusicScore is curated into small, medium, and large scales of 400, 14k, and 200k image-text pairs with varying diversity, respectively. We build a score generation system based on a UNet diffusion model to generate visually readable music scores conditioned on text descriptions to benchmark the MusicScore dataset for music score generation. MusicScore is released to the public at //huggingface.co/datasets/ZheqiDAI/MusicScore.

While recent advances in neural radiance field enable realistic digitization for large-scale scenes, the image-capturing process is still time-consuming and labor-intensive. Previous works attempt to automate this process using the Next-Best-View (NBV) policy for active 3D reconstruction. However, the existing NBV policies heavily rely on hand-crafted criteria, limited action space, or per-scene optimized representations. These constraints limit their cross-dataset generalizability. To overcome them, we propose GenNBV, an end-to-end generalizable NBV policy. Our policy adopts a reinforcement learning (RL)-based framework and extends typical limited action space to 5D free space. It empowers our agent drone to scan from any viewpoint, and even interact with unseen geometries during training. To boost the cross-dataset generalizability, we also propose a novel multi-source state embedding, including geometric, semantic, and action representations. We establish a benchmark using the Isaac Gym simulator with the Houses3K and OmniObject3D datasets to evaluate this NBV policy. Experiments demonstrate that our policy achieves a 98.26% and 97.12% coverage ratio on unseen building-scale objects from these datasets, respectively, outperforming prior solutions.

Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and feed them to the GPU for training in a seamless manner. To sustain high training throughput, state-of-the-art solutions reserve a large fleet of CPU servers for preprocessing which incurs substantial deployment cost and power consumption. Our characterization reveals that prior CPU-centric preprocessing is bottlenecked on feature generation and feature normalization operations as it fails to reap out the abundant inter-/intra-feature parallelism in RecSys preprocessing. PreSto is a storage-centric preprocessing system leveraging In-Storage Processing (ISP), which offloads the bottlenecked preprocessing operations to our ISP units. We show that PreSto outperforms the baseline CPU-centric system with a $9.6\times$ speedup in end-to-end preprocessing time, $4.3\times$ enhancement in cost-efficiency, and $11.3\times$ improvement in energyefficiency on average for production-scale RecSys preprocessing.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

北京阿比特科技有限公司