亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel framework that combines deep generative time series models with decision theory for generating personalized treatment strategies. It leverages historical patient trajectory data to jointly learn the generation of realistic personalized treatment and future outcome trajectories through deep generative time series models. In particular, our framework enables the generation of novel multivariate treatment strategies tailored to the personalized patient history and trained for optimal expected future outcomes based on conditional expected utility maximization. We demonstrate our framework by generating personalized insulin treatment strategies and blood glucose predictions for hospitalized diabetes patients, showcasing the potential of our approach for generating improved personalized treatment strategies. Keywords: deep generative model, probabilistic decision support, personalized treatment generation, insulin and blood glucose prediction

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可辨認的 · 話題模型 · CASES · Analysis ·
2024 年 1 月 2 日

We propose and evaluate an automated pipeline for discovering significant topics from legal decision texts by passing features synthesized with topic models through penalised regressions and post-selection significance tests. The method identifies case topics significantly correlated with outcomes, topic-word distributions which can be manually-interpreted to gain insights about significant topics, and case-topic weights which can be used to identify representative cases for each topic. We demonstrate the method on a new dataset of domain name disputes and a canonical dataset of European Court of Human Rights violation cases. Topic models based on latent semantic analysis as well as language model embeddings are evaluated. We show that topics derived by the pipeline are consistent with legal doctrines in both areas and can be useful in other related legal analysis tasks.

Prompt injection attacks exploit vulnerabilities in large language models (LLMs) to manipulate the model into unintended actions or generate malicious content. As LLM integrated applications gain wider adoption, they face growing susceptibility to such attacks. This study introduces a novel evaluation framework for quantifying the resilience of applications. The framework incorporates innovative techniques designed to ensure representativeness, interpretability, and robustness. To ensure the representativeness of simulated attacks on the application, a meticulous selection process was employed, resulting in 115 carefully chosen attacks based on coverage and relevance. For enhanced interpretability, a second LLM was utilized to evaluate the responses generated from these simulated attacks. Unlike conventional malicious content classifiers that provide only a confidence score, the LLM-based evaluation produces a score accompanied by an explanation, thereby enhancing interpretability. Subsequently, a resilience score is computed by assigning higher weights to attacks with greater impact, thus providing a robust measurement of the application resilience. To assess the framework's efficacy, it was applied on two LLMs, namely Llama2 and ChatGLM. Results revealed that Llama2, the newer model exhibited higher resilience compared to ChatGLM. This finding substantiates the effectiveness of the framework, aligning with the prevailing notion that newer models tend to possess greater resilience. Moreover, the framework exhibited exceptional versatility, requiring only minimal adjustments to accommodate emerging attack techniques and classifications, thereby establishing itself as an effective and practical solution. Overall, the framework offers valuable insights that empower organizations to make well-informed decisions to fortify their applications against potential threats from prompt injection.

We propose a novel data-driven semi-confirmatory factor analysis (SCFA) model that addresses the absence of model specification and handles the estimation and inference tasks with high-dimensional data. Confirmatory factor analysis (CFA) is a prevalent and pivotal technique for statistically validating the covariance structure of latent common factors derived from multiple observed variables. In contrast to other factor analysis methods, CFA offers a flexible covariance modeling approach for common factors, enhancing the interpretability of relationships between the common factors, as well as between common factors and observations. However, the application of classic CFA models faces dual barriers: the lack of a prerequisite specification of "non-zero loadings" or factor membership (i.e., categorizing the observations into distinct common factors), and the formidable computational burden in high-dimensional scenarios where the number of observed variables surpasses the sample size. To bridge these two gaps, we propose the SCFA model by integrating the underlying high-dimensional covariance structure of observed variables into the CFA model. Additionally, we offer computationally efficient solutions (i.e., closed-form uniformly minimum variance unbiased estimators) and ensure accurate statistical inference through closed-form exact variance estimators for all model parameters and factor scores. Through an extensive simulation analysis benchmarking against standard computational packages, SCFA exhibits superior performance in estimating model parameters and recovering factor scores, while substantially reducing the computational load, across both low- and high-dimensional scenarios. It exhibits moderate robustness to model misspecification. We illustrate the practical application of the SCFA model by conducting factor analysis on a high-dimensional gene expression dataset.

Event detection in time series is a challenging task due to the prevalence of imbalanced datasets, rare events, and time interval-defined events. Traditional supervised deep learning methods primarily employ binary classification, where each time step is assigned a binary label indicating the presence or absence of an event. However, these methods struggle to handle these specific scenarios effectively. To address these limitations, we propose a novel supervised regression-based deep learning approach that offers several advantages over classification-based methods. Our approach, with a limited number of parameters, can effectively handle various types of events within a unified framework, including rare events and imbalanced datasets. We provide theoretical justifications for its universality and precision and demonstrate its superior performance across diverse domains, particularly for rare events and imbalanced datasets.

With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. With Large Language Models (LLMs) showcasing remarkable capabilities in key language tasks, this survey provides a detailed overview of the recent advancements in video understanding harnessing the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended spatial-temporal reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into four main types: LLM-based Video Agents, Vid-LLMs Pretraining, Vid-LLMs Instruction Tuning, and Hybrid Methods. Furthermore, this survey also presents a comprehensive study of the tasks and datasets for Vid-LLMs, along with the methodologies employed for evaluation. Additionally, the survey explores the expansive applications of Vid-LLMs across various domains, thereby showcasing their remarkable scalability and versatility in addressing challenges in real-world video understanding. Finally, the survey summarizes the limitations of existing Vid-LLMs and the directions for future research. For more information, we recommend readers visit the repository at //github.com/yunlong10/Awesome-LLMs-for-Video-Understanding.

The exponential growth of digital content has generated massive textual datasets, necessitating advanced analytical approaches. Large Language Models (LLMs) have emerged as tools capable of processing and extracting insights from massive unstructured textual datasets. However, how to leverage LLMs for text-based Information Systems (IS) research is currently unclear. To assist IS research in understanding how to operationalize LLMs, we propose a Text Analytics for Information Systems Research (TAISR) framework. Our proposed framework provides detailed recommendations grounded in IS and LLM literature on how to conduct meaningful text-based IS research. We conducted three case studies in business intelligence using our TAISR framework to demonstrate its application across several IS research contexts. We also outline potential challenges and limitations in adopting LLMs for IS. By offering a systematic approach and evidence of its utility, our TAISR framework contributes to future IS research streams looking to incorporate powerful LLMs for text analytics.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司