Informal reasoning ability is the ability to reason based on common sense, experience, and intuition.Humans use informal reasoning every day to extract the most influential elements for their decision-making from a large amount of life-like information.With the rapid development of language models, the realization of general artificial intelligence has emerged with hope. Given the outstanding informal reasoning ability of humans, how much informal reasoning ability language models have has not been well studied by scholars.In order to explore the gap between humans and language models in informal reasoning ability, this paper constructs a Detective Reasoning Benchmark, which is an assembly of 1,200 questions gathered from accessible online resources, aims at evaluating the model's informal reasoning ability in real-life context.Considering the improvement of the model's informal reasoning ability restricted by the lack of benchmark, we further propose a Self-Question Prompt Framework that mimics human thinking to enhance the model's informal reasoning ability.The goals of self-question are to find key elements, deeply investigate the connections between these elements, encourage the relationship between each element and the problem, and finally, require the model to reasonably answer the problem.The experimental results show that human performance greatly outperforms the SoTA Language Models in Detective Reasoning Benchmark.Besides, Self-Question is proven to be the most effective prompt engineering in improving GPT-4's informal reasoning ability, but it still does not even surpass the lowest score made by human participants.Upon acceptance of the paper, the source code for the benchmark will be made publicly accessible.
Good teachers always tailor their explanations to the learners. Cognitive scientists model this process under the rationality principle: teachers try to maximise the learner's utility while minimising teaching costs. To this end, human teachers seem to build mental models of the learner's internal state, a capacity known as Theory of Mind (ToM). Inspired by cognitive science, we build on Bayesian ToM mechanisms to design teacher agents that, like humans, tailor their teaching strategies to the learners. Our ToM-equipped teachers construct models of learners' internal states from observations and leverage them to select demonstrations that maximise the learners' rewards while minimising teaching costs. Our experiments in simulated environments demonstrate that learners taught this way are more efficient than those taught in a learner-agnostic way. This effect gets stronger when the teacher's model of the learner better aligns with the actual learner's state, either using a more accurate prior or after accumulating observations of the learner's behaviour. This work is a first step towards social machines that teach us and each other, see //teacher-with-tom.github.io.
Learning diverse and qualified behaviors for utilization and adaptation without supervision is a key ability of intelligent creatures. Ideal unsupervised skill discovery methods are able to produce diverse and qualified skills in the absence of extrinsic reward, while the discovered skill set can efficiently adapt to downstream tasks in various ways. Maximizing the Mutual Information (MI) between skills and visited states can achieve ideal skill-conditioned behavior distillation in theory. However, it's difficult for recent advanced methods to well balance behavioral quality (exploration) and diversity (exploitation) in practice, which may be attributed to the unreasonable MI estimation by their rigid intrinsic reward design. In this paper, we propose Contrastive multi-objectives Skill Discovery (ComSD) which tries to mitigate the quality-versus-diversity conflict of discovered behaviors through a more reasonable MI estimation and a dynamically weighted intrinsic reward. ComSD proposes to employ contrastive learning for a more reasonable estimation of skill-conditioned entropy in MI decomposition. In addition, a novel weighting mechanism is proposed to dynamically balance different entropy (in MI decomposition) estimations into a novel multi-objective intrinsic reward, to improve both skill diversity and quality. For challenging robot behavior discovery, ComSD can produce a qualified skill set consisting of diverse behaviors at different activity levels, which recent advanced methods cannot. On numerical evaluations, ComSD exhibits state-of-the-art adaptation performance, significantly outperforming recent advanced skill discovery methods across all skill combination tasks and most skill finetuning tasks. Codes will be released at //github.com/liuxin0824/ComSD.
Uncertainty is prevalent in engineering design, statistical learning, and decision making broadly. Due to inherent risk-averseness and ambiguity about assumptions, it is common to address uncertainty by formulating and solving conservative optimization models expressed using measures of risk and related concepts. We survey the rapid development of risk measures over the last quarter century. From their beginning in financial engineering, we recount the spread to nearly all areas of engineering and applied mathematics. Solidly rooted in convex analysis, risk measures furnish a general framework for handling uncertainty with significant computational and theoretical advantages. We describe the key facts, list several concrete algorithms, and provide an extensive list of references for further reading. The survey recalls connections with utility theory and distributionally robust optimization, points to emerging applications areas such as fair machine learning, and defines measures of reliability.
Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clipping, comparing parameter divergences among local updates. In this work, we propose a new stealthy and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a generative trigger function that can learn to manipulate the benign samples with an imperceptible flexible trigger pattern and simultaneously make the trigger pattern include the most significant hidden features of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable difference (the mapping between the trigger pattern and target label), we make our attack naturally stealthy. Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack compared to prior attacks on decentralized learning framework with eight well-studied defenses.
Respondent-driven sampling (RDS) is both a sampling strategy and an estimation method. It is commonly used to study individuals that are difficult to access with standard sampling techniques. As with any sampling strategy, RDS has advantages and challenges. This article examines recent work using RDS in the context of human trafficking. We begin with an overview of the RDS process and methodology, then discuss RDS in the particular context of trafficking. We end with a description of recent work and potential future directions.
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.