Verifying user attributes to provide fine-grained access control to databases is fundamental to an attribute-based authentication system. In such systems, either a single (central) authority verifies all attributes, or multiple independent authorities verify individual attributes distributedly to allow a user to access records stored on the servers. While a \emph{central} setup is more communication cost efficient, it causes privacy breach of \emph{all} user attributes to a central authority. Recently, Jafarpisheh et al. studied an information theoretic formulation of the \emph{distributed} multi-authority setup with $N$ non-colluding authorities, $N$ attributes and $K$ possible values for each attribute, called an $(N,K)$ distributed attribute-based private access control (DAPAC) system, where each server learns only one attribute value that it verifies, and remains oblivious to the remaining $N-1$ attributes. We show that off-loading a subset of attributes to a central server for verification improves the achievable rate from $\frac{1}{2K}$ in Jafarpisheh et al. to $\frac{1}{K+1}$ in this paper, thus \emph{almost doubling the rate} for relatively large $K$, while sacrificing the privacy of a few possibly non-sensitive attributes.
Aspect-based sentiment analysis (ABSA) delves into understanding sentiments specific to distinct elements within a user-generated review. It aims to analyze user-generated reviews to determine a) the target entity being reviewed, b) the high-level aspect to which it belongs, c) the sentiment words used to express the opinion, and d) the sentiment expressed toward the targets and the aspects. While various benchmark datasets have fostered advancements in ABSA, they often come with domain limitations and data granularity challenges. Addressing these, we introduce the OATS dataset, which encompasses three fresh domains and consists of 27,470 sentence-level quadruples and 17,092 review-level tuples. Our initiative seeks to bridge specific observed gaps: the recurrent focus on familiar domains like restaurants and laptops, limited data for intricate quadruple extraction tasks, and an occasional oversight of the synergy between sentence and review-level sentiments. Moreover, to elucidate OATS's potential and shed light on various ABSA subtasks that OATS can solve, we conducted experiments, establishing initial baselines. We hope the OATS dataset augments current resources, paving the way for an encompassing exploration of ABSA (//github.com/RiTUAL-UH/OATS-ABSA).
Pre-training has been investigated to improve the efficiency and performance of training neural operators in data-scarce settings. However, it is largely in its infancy due to the inherent complexity and diversity, such as long trajectories, multiple scales and varying dimensions of partial differential equations (PDEs) data. In this paper, we present a new auto-regressive denoising pre-training strategy, which allows for more stable and efficient pre-training on PDE data and generalizes to various downstream tasks. Moreover, by designing a flexible and scalable model architecture based on Fourier attention, we can easily scale up the model for large-scale pre-training. We train our PDE foundation model with up to 0.5B parameters on 10+ PDE datasets with more than 100k trajectories. Extensive experiments show that we achieve SOTA on these benchmarks and validate the strong generalizability of our model to significantly enhance performance on diverse downstream PDE tasks like 3D data. Code is available at \url{//github.com/thu-ml/DPOT}.
Visualizations for scattered data are used to make users understand certain attributes of their data by solving different tasks, e.g. correlation estimation, outlier detection, cluster separation. In this paper, we focus on the later task, and develop a technique that is aligned to human perception, that can be used to understand how human subjects perceive clusterings in scattered data and possibly optimize for better understanding. Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, we can show in our experiments, that their output do not reflect human cluster perception. We propose a learning strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers. Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability. In order to train ClusterNet on human annotated data, we use a PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques and can show, that ClusterNet is able to generalize to unseen and out of scope data.
Selecting a UI element is a fundamental operation on webpages, and the ease of tapping a target object has a significant impact on usability. It is thus important to analyze existing UIs in order to design better ones. However, tools proposed in previous studies cannot identify whether an element is tappable on modern webpages. In this study, we developed Tappy that can identify tappable UI elements on webpages and estimate the tap-success rate based on the element size. Our interviews of professional designers and engineers showed that Tappy helped discussions of UI design on the basis of its quantitative metric. Furthermore, we have launched this tool to be freely available to external users, so readers can access Tappy by visiting the website (//tappy.yahoo.co.jp).
The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in both univariate and multivariate time series data. This paper introduces TransNAS-TSAD, a framework that synergizes the transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This approach effectively tackles the complexities of time series data, balancing computational efficiency with detection accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models due to its tailored architectural adaptability and the efficient exploration of complex search spaces, leading to marked improvements in diverse data scenarios. We also introduce the Efficiency-Accuracy-Complexity Score (EACS) as a new metric for assessing model performance, emphasizing the balance between accuracy and computational resources. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient solution for complex real-world applications. This research highlights the TransNAS-TSAD potential across a wide range of industry applications and paves the way for future developments in the field.
Schema matching is a crucial task in data integration, involving the alignment of a source database schema with a target schema to establish correspondence between their elements. This task is challenging due to textual and semantic heterogeneity, as well as differences in schema sizes. Although machine-learning-based solutions have been explored in numerous studies, they often suffer from low accuracy, require manual mapping of the schemas for model training, or need access to source schema data which might be unavailable due to privacy concerns. In this paper we present a novel method, named ReMatch, for matching schemas using retrieval-enhanced Large Language Models (LLMs). Our method avoids the need for predefined mapping, any model training, or access to data in the source database. In the ReMatch method the tables of the target schema and the attributes of the source schema are first represented as structured passage-based documents. For each source attribute document, we retrieve $J$ documents, representing target schema tables, according to their semantic relevance. Subsequently, we create a prompt for every source table, comprising all its attributes and their descriptions, alongside all attributes from the set of top $J$ target tables retrieved previously. We employ LLMs using this prompt for the matching task, yielding a ranked list of $K$ potential matches for each source attribute. Our experimental results on large real-world schemas demonstrate that ReMatch significantly improves matching capabilities and outperforms other machine learning approaches. By eliminating the requirement for training data, ReMatch becomes a viable solution for real-world scenarios.
Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench's modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: //github.com/EfficientTraining/LabelBench.
This paper investigates new data exploration experiences that enable blind users to interact with statistical data visualizations$-$bar plots, heat maps, box plots, and scatter plots$-$leveraging multimodal data representations. In addition to sonification and textual descriptions that are commonly employed by existing accessible visualizations, our MAIDR (multimodal access and interactive data representation) system incorporates two additional modalities (braille and review) that offer complementary benefits. It also provides blind users with the autonomy and control to interactively access and understand data visualizations. In a user study involving 11 blind participants, we found the MAIDR system facilitated the accurate interpretation of statistical visualizations. Participants exhibited a range of strategies in combining multiple modalities, influenced by their past interactions and experiences with data visualizations. This work accentuates the overlooked potential of combining refreshable tactile representation with other modalities and elevates the discussion on the importance of user autonomy when designing accessible data visualizations.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.