Let $\mathcal{H}_{n,d} := \mathbb{R}[x_1$,$\ldots$, $x_n]_d$ be the set of all the homogeneous polynomials of degree $d$, and let $\mathcal{H}_{n,d}^s := \mathcal{H}_{n,d}^{\mathfrak{S}_n}$ be the subset of all the symmetric polynomials. For a semialgebraic subset of $A \subset \mathbb{R}^n$ and a vector subspace $\mathcal{H} \subset \mathcal{H}_{n,d}$, we define a PSD cone $\mathcal{P}(A$, $\mathcal{H})$ by $\mathcal{P}(A$, $\mathcal{H}) := \big\{f \in \mathcal{H}$ $\big|$ $f(a) \geq 0$ ($\forall a \in A$)$\big\}$. In this article, we study a family of extremal symmetric polynomials of $\mathcal{P}_{3,6} := \mathcal{P}(\mathbb{R}^3$, $\mathcal{H}_{3,6})$ and that of $\mathcal{P}_{4,4} := \mathcal{P}(\mathbb{R}^4$, $\mathcal{H}_{4,4})$. We also determine all the extremal polynomials of $\mathcal{P}_{3,5}^{s+} := \mathcal{P}(\mathbb{R}_+^3$, $\mathcal{H}_{3,5}^s)$ where $\mathbb{R}_+ := \big\{ x \in \mathbb{R}$, $x \geq 0 \big\}$. Some of them provide extremal polynomials of $\mathcal{P}_{3,10}$.
A Reeb graph is a graphical representation of a scalar function $f: X \to \mathbb{R}$ on a topological space $X$ that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multivariate function $f: X \to \mathbb{R}^d$. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e.,~a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first prove the stability of our measure theoretic constructions with respect to the interleaving distance. We then prove their stability with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively.
Let $\mathbf S \in \mathbb R^{n \times n}$ satisfy $\|\mathbf 1-\mathbf S\|_2\le\epsilon n$, where $\mathbf 1$ is the all ones matrix and $\|\cdot\|_2$ is the spectral norm. It is well-known that there exists such an $\mathbf S$ with just $O(n/\epsilon^2)$ non-zero entries: we can let $\mathbf S$ be the scaled adjacency matrix of a Ramanujan expander graph. We show that such an $\mathbf S$ yields a $universal$ $sparsifier$ for any positive semidefinite (PSD) matrix. In particular, for any PSD $\mathbf A \in \mathbb{R}^{n\times n}$ with entries bounded in magnitude by $1$, $\|\mathbf A - \mathbf A\circ\mathbf S\|_2 \le \epsilon n$, where $\circ$ denotes the entrywise (Hadamard) product. Our techniques also give universal sparsifiers for non-PSD matrices. In this case, letting $\mathbf S$ be the scaled adjacency matrix of a Ramanujan graph with $\tilde O(n/\epsilon^4)$ edges, we have $\|\mathbf A - \mathbf A \circ \mathbf S \|_2 \le \epsilon \cdot \max(n,\|\mathbf A\|_1)$, where $\|\mathbf A\|_1$ is the nuclear norm. We show that the above bounds for both PSD and non-PSD matrices are tight up to log factors. Since $\mathbf A \circ \mathbf S$ can be constructed deterministically, our result for PSD matrices derandomizes and improves upon known results for randomized matrix sparsification, which require randomly sampling ${O}(\frac{n \log n}{\epsilon^2})$ entries. We also leverage our results to give the first deterministic algorithms for several problems related to singular value approximation that run in faster than matrix multiplication time. Finally, if $\mathbf A \in \{-1,0,1\}^{n \times n}$ is PSD, we show that $\mathbf{\tilde A}$ with $\|\mathbf A - \mathbf{\tilde A}\|_2 \le \epsilon n$ can be obtained by deterministically reading $\tilde O(n/\epsilon)$ entries of $\mathbf A$. This improves the $1/\epsilon$ dependence on our result for general PSD matrices and is near-optimal.
We introduce a representation of a 2D steady vector field ${{\mathbf v}}$ by two scalar fields $a$, $b$, such that the isolines of $a$ correspond to stream lines of ${{\mathbf v}}$, and $b$ increases with constant speed under integration of ${{\mathbf v}}$. This way, we get a direct encoding of stream lines, i.e., a numerical integration of ${{\mathbf v}}$ can be replaced by a local isoline extraction of $a$. To guarantee a solution in every case, gradient-preserving cuts are introduced such that the scalar fields are allowed to be discontinuous in the values but continuous in the gradient. Along with a piecewise linear discretization and a proper placement of the cuts, the fields $a$ and $b$ can be computed. We show several evaluations on non-trivial vector fields.
A word $w=w_1\cdots w_n$ over the set of positive integers is a Motzkin word whenever $w_1=\texttt{1}$, $1\leq w_k\leq w_{k-1}+1$, and $w_{k-1}\neq w_{k}$ for $k=2, \dots, n$. It can be associated to a $n$-column Motzkin polyomino whose $i$-th column contains $w_i$ cells, and all columns are bottom-justified. We reveal bijective connections between Motzkin paths, restricted Catalan words, primitive {\L}ukasiewicz paths, and Motzkin polyominoes. Using the aforementioned bijections together with classical one-to-one correspondence with Dyck paths avoiding $UDU$s, we provide generating functions with respect to the length, area, semiperimeter, value of the last symbol, and number of interior points of Motzkin polyominoes. We give asymptotics and close expressions for the total area, total semiperimeter, sum of the last symbol values, and total number of interior points over all Motzkin polyominoes of a given length. We also present and prove an engaging trinomial relation concerning the number of cells lying at different levels and first terms of the expanded $(1+x+x^2)^n$.
This work concerns elementwise-transformations of spiked matrices: $Y_n = n^{-1/2} f( \sqrt{n} X_n + Z_n)$. Here, $f$ is a function applied elementwise, $X_n$ is a low-rank signal matrix, and $Z_n$ is white noise. We find that principal component analysis is powerful for recovering signal under highly nonlinear or discontinuous transformations. Specifically, in the high-dimensional setting where $Y_n$ is of size $n \times p$ with $n,p \rightarrow \infty$ and $p/n \rightarrow \gamma > 0$, we uncover a phase transition: for signal-to-noise ratios above a sharp threshold -- depending on $f$, the distribution of elements of $Z_n$, and the limiting aspect ratio $\gamma$ -- the principal components of $Y_n$ (partially) recover those of $X_n$. Below this threshold, the principal components of $Y_n$ are asymptotically orthogonal to the signal. In contrast, in the standard setting where $X_n + n^{-1/2}Z_n$ is observed directly, the analogous phase transition depends only on $\gamma$. A similar phenomenon occurs with $X_n$ square and symmetric and $Z_n$ a generalized Wigner matrix.
We are given a set $\mathcal{Z}=\{(R_1,s_1),\ldots, (R_n,s_n)\}$, where each $R_i$ is a \emph{range} in $\Re^d$, such as rectangle or ball, and $s_i \in [0,1]$ denotes its \emph{selectivity}. The goal is to compute a small-size \emph{discrete data distribution} $\mathcal{D}=\{(q_1,w_1),\ldots, (q_m,w_m)\}$, where $q_j\in \Re^d$ and $w_j\in [0,1]$ for each $1\leq j\leq m$, and $\sum_{1\leq j\leq m}w_j= 1$, such that $\mathcal{D}$ is the most \emph{consistent} with $\mathcal{Z}$, i.e., $\mathrm{err}_p(\mathcal{D},\mathcal{Z})=\frac{1}{n}\sum_{i=1}^n\! \lvert{s_i-\sum_{j=1}^m w_j\cdot 1(q_j\in R_i)}\rvert^p$ is minimized. In a database setting, $\mathcal{Z}$ corresponds to a workload of range queries over some table, together with their observed selectivities (i.e., fraction of tuples returned), and $\mathcal{D}$ can be used as compact model for approximating the data distribution within the table without accessing the underlying contents. In this paper, we obtain both upper and lower bounds for this problem. In particular, we show that the problem of finding the best data distribution from selectivity queries is $\mathsf{NP}$-complete. On the positive side, we describe a Monte Carlo algorithm that constructs, in time $O((n+\delta^{-d})\delta^{-2}\mathop{\mathrm{polylog}})$, a discrete distribution $\tilde{\mathcal{D}}$ of size $O(\delta^{-2})$, such that $\mathrm{err}_p(\tilde{\mathcal{D}},\mathcal{Z})\leq \min_{\mathcal{D}}\mathrm{err}_p(\mathcal{D},\mathcal{Z})+\delta$ (for $p=1,2,\infty$) where the minimum is taken over all discrete distributions. We also establish conditional lower bounds, which strongly indicate the infeasibility of relative approximations as well as removal of the exponential dependency on the dimension for additive approximations. This suggests that significant improvements to our algorithm are unlikely.
We introduce a calculus of extensional resource terms. These are resource terms \`a la Ehrhard-Regnier, but in infinite $\eta$-long form, while retaining a finite syntax and dynamics: in particular, we prove strong confluence and normalization. Then we define an extensional version of Taylor expansion, mapping ordinary $\lambda$-terms to sets (or infinite linear combinations) of extensional resource terms: just like for ordinary Taylor expansion, the dynamics of our resource calculus allows to simulate the $\beta$-reduction of $\lambda$-terms; the extensional nature of expansion shows in that we are also able to simulate $\eta$-reduction. In a sense, extensional resource terms form a language of (non-necessarily normal) finite approximants of Nakajima trees, much like ordinary resource terms are approximants of B\"ohm-trees. Indeed, we show that the equivalence induced on $\lambda$-terms by the normalization of extensional Taylor-expansion is nothing but $H^*$, the greatest consistent sensible $\lambda$-theory. Taylor expansion has profoundly renewed the approximation theory of the $\lambda$-calculus by providing a quantitative alternative to order-based approximation techniques, such as Scott continuity and B\"ohm trees. Extensional Taylor expansion enjoys similar advantages: e.g., to exhibit models of $H^*$, it is now sufficient to provide a model of the extensional resource calculus. We apply this strategy to give a new, elementary proof of a result by Manzonetto: $H^*$ is the $\lambda$-theory induced by a well-chosen reflexive object in the relational model of the $\lambda$-calculus.
For a permutation $\pi:[k] \to [k]$, a function $f:[n] \to \mathbb{R}$ contains a $\pi$-appearance if there exists $1 \leq i_1 < i_2 < \dots < i_k \leq n$ such that for all $s,t \in [k]$, $f(i_s) < f(i_t)$ if and only if $\pi(s) < \pi(t)$. The function is $\pi$-free if it has no $\pi$-appearances. In this paper, we investigate the problem of testing whether an input function $f$ is $\pi$-free or whether $f$ differs on at least $\varepsilon n$ values from every $\pi$-free function. This is a generalization of the well-studied monotonicity testing and was first studied by Newman, Rabinovich, Rajendraprasad and Sohler (Random Structures and Algorithms 2019). We show that for all constants $k \in \mathbb{N}$, $\varepsilon \in (0,1)$, and permutation $\pi:[k] \to [k]$, there is a one-sided error $\varepsilon$-testing algorithm for $\pi$-freeness of functions $f:[n] \to \mathbb{R}$ that makes $\tilde{O}(n^{o(1)})$ queries. We improve significantly upon the previous best upper bound $O(n^{1 - 1/(k-1)})$ by Ben-Eliezer and Canonne (SODA 2018). Our algorithm is adaptive, while the earlier best upper bound is known to be tight for nonadaptive algorithms.
Given an $n$-vertex $m$-edge digraph $G = (V,E)$ and a set $S \subseteq V$, $|S| = n^{\sigma}$ (for some $0 < \sigma \le 1$) of designated sources, the $S \times V$-direcahability problem is to compute for every $s \in S$, the set of all the vertices reachable from $s$ in $G$. Known naive algorithms for this problem either run a BFS/DFS separately from every source, and as a result require $O(m \cdot n^{\sigma})$ time, or compute the transitive closure of $G$ in $\tilde O(n^{\omega})$ time, where $\omega < 2.371552\ldots$ is the matrix multiplication exponent. Hence, the current state-of-the-art bound for the problem on graphs with $m = \Theta(n^{\mu})$ edges in $\tilde O(n^{\min \{\mu + \sigma, \omega \}})$. Our first contribution is an algorithm with running time $\tilde O(n^{1 + \tiny{\frac{2}{3}} \omega(\sigma)})$ for this problem, where $\omega(\sigma)$ is the rectangular matrix multiplication exponent. Using current state-of-the-art estimates on $\omega(\sigma)$, our exponent is better than $\min \{2 + \sigma, \omega \}$ for $\tilde \sigma \le \sigma \le 0.53$, where $1/3 < \tilde \sigma < 0.3336$ is a universal constant. Our second contribution is a sequence of algorithms $\mathcal A_0, \mathcal A_1, \mathcal A_2, \ldots$ for the $S \times V$-direachability problem. We argue that under a certain assumption that we introduce, for every $\tilde \sigma \le \sigma < 1$, there exists a sufficiently large index $k = k(\sigma)$ so that $\mathcal A_k$ improves upon the current state-of-the-art bounds for $S \times V$-direachability with $|S| = n^{\sigma}$, in the densest regime $\mu =2$. We show that to prove this assumption, it is sufficient to devise an algorithm that computes a rectangular max-min matrix product roughly as efficiently as ordinary $(+, \cdot)$ matrix product. Our algorithms heavily exploit recent constructions of directed shortcuts by Kogan and Parter.
Standard multidimensional scaling takes as input a dissimilarity matrix of general term $\delta _{ij}$ which is a numerical value. In this paper we input $\delta _{ij}=[\underline{\delta _{ij}},\overline{\delta _{ij}}]$ where $\underline{\delta _{ij}}$ and $\overline{\delta _{ij}}$ are the lower bound and the upper bound of the ``dissimilarity'' between the stimulus/object $S_i$ and the stimulus/object $S_j$ respectively. As output instead of representing each stimulus/object on a factorial plane by a point, as in other multidimensional scaling methods, in the proposed method each stimulus/object is visualized by a rectangle, in order to represent dissimilarity variation. We generalize the classical scaling method looking for a method that produces results similar to those obtained by Tops Principal Components Analysis. Two examples are presented to illustrate the effectiveness of the proposed method.