亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Using correct design metrics and understanding the limitations of the underlying technology is critical to developing effective scheduling algorithms. Unfortunately, existing scheduling techniques used \emph{incorrect} metrics and had \emph{unrealistic} assumptions for fair scheduling of multi-tenant FPGAs where each tenant is aimed to share approximately the same number of resources both spatially and temporally. This paper introduces an enhanced fair scheduling algorithm for multi-tenant FPGA use, addressing previous metric and assumption issues, with three specific improvements claimed First, our method ensures spatiotemporal fairness by considering both spatial and temporal aspects, addressing the limitation of prior work that assumed uniform task latency. Second, we incorporate energy considerations into fairness by adjusting scheduling intervals and accounting for energy overhead, thereby balancing energy efficiency with fairness. Third, we acknowledge overlooked aspects of FPGA multi-tenancy, including heterogeneous regions and the constraints on dynamically merging/splitting partially reconfigurable regions. We develop and evaluate our improved fair scheduling algorithm with these three enhancements. Inspired by the Greek goddess of law and personification of justice, we name our fair scheduling solution THEMIS: \underline{T}ime, \underline{H}eterogeneity, and \underline{E}nergy \underline{Mi}nded \underline{S}cheduling. We used the Xilinx Zedboard XC7Z020 to quantify our approach's savings. Compared to previous algorithms, our improved scheduling algorithm enhances fairness between 24.2--98.4\% and allows a trade-off between 55.3$\times$ in energy vs. 69.3$\times$ in fairness. The paper thus informs cloud providers about future scheduling optimizations for fairness with related challenges and opportunities.

相關內容

Softmax attention is the principle backbone of foundation models for various artificial intelligence applications, yet its quadratic complexity in sequence length can limit its inference throughput in long-context settings. To address this challenge, alternative architectures such as linear attention, State Space Models (SSMs), and Recurrent Neural Networks (RNNs) have been considered as more efficient alternatives. While connections between these approaches exist, such models are commonly developed in isolation and there is a lack of theoretical understanding of the shared principles underpinning these architectures and their subtle differences, greatly influencing performance and scalability. In this paper, we introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation. Our framework facilitates rigorous comparisons, providing new insights on the distinctive characteristics of each model class. For instance, we compare linear attention and selective SSMs, detailing their differences and conditions under which both are equivalent. We also provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated. Additionally, we substantiate these new insights with empirical validations and mathematical arguments. This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.

Finding the root causes of anomalies in cloud computing systems quickly is crucial to ensure availability and efficiency since accurate root causes can guide engineers to take appropriate actions to address the anomalies and maintain customer satisfaction. However, it is difficult to investigate and identify the root causes based on large-scale and high-dimension monitoring data collected from complex cloud computing environments. Due to the inherently dynamic characteristics of cloud computing systems, the existing approaches in practice largely rely on manual analyses for flexibility and reliability, but massive unpredictable factors and high data complexity make the process time-consuming. Despite recent advances in automated detection and investigation approaches, the speed and quality of root cause analyses remain limited by the lack of expert involvement in these approaches. The limitations found in the current solutions motivate us to propose a visual analytics approach that facilitates the interactive investigation of the anomaly root causes in cloud computing systems. We identified three challenges, namely, a) modeling databases for the root cause investigation, b) inferring root causes from large-scale time series, and c) building comprehensible investigation results. In collaboration with domain experts, we addressed these challenges with RCInvestigator, a novel visual analytics system that establishes a tight collaboration between human and machine and assists experts in investigating the root causes of cloud computing system anomalies. We evaluated the effectiveness of RCInvestigator through two use cases based on real-world data and received positive feedback from experts.

Most existing prompting methods suffer from the issues of generalizability and consistency, as they often rely on instance-specific solutions that may not be applicable to other instances and lack task-level consistency across the selected few-shot examples. To address these limitations, we propose a comprehensive framework, StrategyLLM, allowing LLMs to perform inductive reasoning, deriving general strategies from specific task instances, and deductive reasoning, applying these general strategies to particular task examples, for constructing generalizable and consistent few-shot prompts. It employs four LLM-based agents: strategy generator, executor, optimizer, and evaluator, working together to generate, evaluate, and select promising strategies for a given task. Experimental results demonstrate that StrategyLLM outperforms the competitive baseline CoT-SC that requires human-annotated solutions on 13 datasets across 4 challenging tasks without human involvement, including math reasoning (34.2\% $\rightarrow$ 38.8\%), commonsense reasoning (70.3\% $\rightarrow$ 72.5\%), algorithmic reasoning (73.7\% $\rightarrow$ 85.0\%), and symbolic reasoning (30.0\% $\rightarrow$ 79.2\%). Further analysis reveals that StrategyLLM is applicable to various LLMs and demonstrates advantages across numerous scenarios.

This work investigates the offline formulation of the contextual bandit problem, where the goal is to leverage past interactions collected under a behavior policy to evaluate, select, and learn new, potentially better-performing, policies. Motivated by critical applications, we move beyond point estimators. Instead, we adopt the principle of pessimism where we construct upper bounds that assess a policy's worst-case performance, enabling us to confidently select and learn improved policies. Precisely, we introduce novel, fully empirical concentration bounds for a broad class of importance weighting risk estimators. These bounds are general enough to cover most existing estimators and pave the way for the development of new ones. In particular, our pursuit of the tightest bound within this class motivates a novel estimator (LS), that logarithmically smooths large importance weights. The bound for LS is provably tighter than all its competitors, and naturally results in improved policy selection and learning strategies. Extensive policy evaluation, selection, and learning experiments highlight the versatility and favorable performance of LS.

Researchers and innovators have made enormous efforts in developing ideation methods, such as morphological analysis and design-by-analogy, to aid engineering design ideation for problem solving and innovation. Among these, the Theory of Inventive Problem Solving (TRIZ) stands out as one of the most well-known approaches, widely applied for systematic innovation. However, the complexity of TRIZ resources and concepts, coupled with its reliance on users' knowledge, experience, and reasoning capabilities, limits its practicality. Therefore, we explore the recent advances of large language models (LLMs) for a generative approach to bridge this gap. This paper proposes AutoTRIZ, an artificial ideation tool that uses LLMs to automate and enhance the TRIZ methodology. By leveraging the broad knowledge and advanced reasoning capabilities of LLMs, AutoTRIZ offers a novel approach for design automation and interpretable ideation with artificial intelligence. AutoTRIZ takes a problem statement from the user as its initial input, and automatically generates a solution report after the reasoning process. We demonstrate and evaluate the effectiveness of AutoTRIZ through consistency experiments in contradiction detection, and a case study comparing solutions generated by AutoTRIZ with the experts' analyses from the textbook. Moreover, the proposed LLM-based framework holds the potential for extension to automate other knowledge-based ideation methods, including SCAMPER, Design Heuristics, and Design-by-Analogy, paving the way for a new era of artificial ideation for design innovation.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司