亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. This meeting report outlines current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present insights and ideas put forward by the quantum dot community on how to overcome them. We aim to provide guidance and inspiration to researchers invested in automation efforts.

相關內容

The growing threats of uncertainties, anomalies, and cyberattacks on power grids are driving a critical need to advance situational awareness which allows system operators to form a complete and accurate picture of the present and future state. Simulation and estimation are foundational tools in this process. However, existing tools lack the robustness and efficiency required to achieve the level of situational awareness needed for the ever-evolving threat landscape. Industry-standard (steady-state) simulators are not robust to blackouts, often leading to non-converging or non-actionable results. Estimation tools lack robustness to anomalous data, returning erroneous system states. Efficiency is the other major concern as nonlinearities and scalability issues make large systems slow to converge. This thesis addresses robustness and efficiency gaps through a dual-fold contribution. We first address the inherent limitations in the existing physics-based and data-driven worlds; and then transcend the boundaries of conventional algorithmic design in the direction of a new paradigm -- Physics-ML Synergy -- which integrates the strengths of the two worlds. Our approaches are built on circuit formulation which provides a unified framework that applies to both transmission and distribution. Sparse optimization acts as the key enabler to make these tools intrinsically robust and immune to random threats, pinpointing dominant sources of (random) blackouts and data errors. Further, we explore sparsity-exploiting optimizations to develop lightweight ML models whose prediction and detection capabilities are a complement to physics-based tools; and whose lightweight designs advance generalization and scalability. Finally, Physics-ML Synergy brings robustness and efficiency further against targeted cyberthreats, by interconnecting our physics-based tools with lightweight ML.

Model misspecification analysis strategies, such as anomaly detection, model validation, and model comparison are a key component of scientific model development. Over the last few years, there has been a rapid rise in the use of simulation-based inference (SBI) techniques for Bayesian parameter estimation, applied to increasingly complex forward models. To move towards fully simulation-based analysis pipelines, however, there is an urgent need for a comprehensive simulation-based framework for model misspecification analysis. In this work, we provide a solid and flexible foundation for a wide range of model discrepancy analysis tasks, using distortion-driven model misspecification tests. From a theoretical perspective, we introduce the statistical framework built around performing many hypothesis tests for distortions of the simulation model. We also make explicit analytic connections to classical techniques: anomaly detection, model validation, and goodness-of-fit residual analysis. Furthermore, we introduce an efficient self-calibrating training algorithm that is useful for practitioners. We demonstrate the performance of the framework in multiple scenarios, making the connection to classical results where they are valid. Finally, we show how to conduct such a distortion-driven model misspecification test for real gravitational wave data, specifically on the event GW150914.

The optimization of large-scale multibody systems is a numerically challenging task, in particular when considering multiple conflicting criteria at the same time. In this situation, we need to approximate the Pareto set of optimal compromises, which is significantly more expensive than finding a single optimum in single-objective optimization. To prevent large costs, the usage of surrogate models, constructed from a small but informative number of expensive model evaluations, is a very popular and widely studied approach. The central challenge then is to ensure a high quality (that is, near-optimality) of the solutions that were obtained using the surrogate model, which can be hard to guarantee with a single pre-computed surrogate. We present a back-and-forth approach between surrogate modeling and multi-objective optimization to improve the quality of the obtained solutions. Using the example of an expensive-to-evaluate multibody system, we compare different strategies regarding multi-objective optimization, sampling and also surrogate modeling, to identify the most promising approach in terms of computational efficiency and solution quality.

A well-established approach to proving progress properties such as deadlock-freedom and termination is to associate obligations with threads. For example, in most existing work the proof rule for lock acquisition prescribes a standard usage protocol by burdening the acquiring thread with an obligation to release the lock. The fact that the obligation creation is hardcoded into the acquire operation, however, rules out non-standard clients e.g. where the release happens in a different thread. We overcome this limitation by instead having the blocking operations take the obligation creation operations required for the specific client scenario as arguments. We dub this simple instance of higher-order programming with auxiliary code Sassy. To illustrate Sassy, we extend HeapLang, a simple, higher-order, concurrent programming language with erasable code and state. The resulting language gets stuck if no progress is made. Consequently, we can apply standard safety separation logic to compositionally reason about termination in a fine-grained concurrent setting. We validated Sassy by developing (non-foundational) machine-checked proofs of representative locks -- an unfair Spinlock (competitive succession), a fair Ticketlock (direct handoff succession) and the hierarchically constructed Cohortlock that is starvation-free if the underlying locks are starvation-free -- against our specifications using an encoding of the approach in the VeriFast program verifier for C and Java.

Not accounting for competing events in survival analysis can lead to biased estimates, as individuals who die from other causes do not have the opportunity to develop the event of interest. Formal definitions and considerations for causal effects in the presence of competing risks have been published, but not for the mediation analysis setting. We propose, for the first time, an approach based on the path-specific effects framework to account for competing risks in longitudinal mediation analysis with time-to-event outcomes. We do so by considering the pathway through the competing event as another mediator, which is nested within our longitudinal mediator of interest. We provide a theoretical formulation and related definitions of the effects of interest based on the mediational g-formula, as well as a detailed description of the algorithm. We also present an application of our algorithm to data from the Strong Heart Study, a prospective cohort of American Indian adults. In this application, we evaluated the mediating role of the blood pressure trajectory (measured during three visits) on the association between arsenic and cadmium, in separate models, with time to cardiovascular disease, accounting for competing risks by death. Identifying the effects through different paths enables us to evaluate the impact of metals on the outcome of interest, as well as through competing risks, more transparently.

A statistical network model with overlapping communities can be generated as a superposition of mutually independent random graphs of varying size. The model is parameterized by the number of nodes, the number of communities, and the joint distribution of the community size and the edge probability. This model admits sparse parameter regimes with power-law limiting degree distributions and non-vanishing clustering coefficients. This article presents large-scale approximations of clique and cycle frequencies for graph samples generated by the model, which are valid for regimes with unbounded numbers of overlapping communities. Our results reveal the growth rates of these subgraph frequencies and show that their theoretical densities can be reliably estimated from data.

Statistical learning under distribution shift is challenging when neither prior knowledge nor fully accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to control the worst-case statistical performance within an uncertainty set of candidate distributions, but how to properly specify the set remains challenging. To enable distributional robustness without being overly conservative, in this paper, we propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate. More specifically, we assume the unknown density ratio between the target distribution and its estimate is isotonic with respect to some partial order. At the population level, we provide a solution to the shape-constrained optimization problem that does not involve the isotonic constraint. At the sample level, we provide consistency results for an empirical estimator of the target in a range of different settings. Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.

We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).

This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives, based on convolutions with either the normalized sampled Gaussian kernel or the integrated Gaussian kernel followed by central differences. The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently compared to more direct derivative approximations based on explicit convolutions with either sampled Gaussian kernels or integrated Gaussian kernels. While these computational benefits do also hold for the genuinely discrete approach for computing discrete analogues of Gaussian derivatives, based on convolution with the discrete analogue of the Gaussian kernel followed by central differences, the underlying mathematical primitives for the discrete analogue of the Gaussian kernel, in terms of modified Bessel functions of integer order, may not be available in certain frameworks for image processing, such as when performing deep learning based on scale-parameterized filters in terms of Gaussian derivatives, with learning of the scale levels. In this paper, we present a characterization of the properties of these hybrid discretization methods, in terms of quantitative performance measures concerning the amount of spatial smoothing that they imply, as well as the relative consistency of scale estimates obtained from scale-invariant feature detectors with automatic scale selection, with an emphasis on the behaviour for very small values of the scale parameter, which may differ significantly from corresponding results obtained from the fully continuous scale-space theory, as well as between different types of discretization methods.

As the spatial features of multivariate data are increasingly central in researchers' applied problems, there is a growing demand for novel spatially-aware methods that are flexible, easily interpretable, and scalable to large data. We develop inside-out cross-covariance (IOX) models for multivariate spatial likelihood-based inference. IOX leads to valid cross-covariance matrix functions which we interpret as inducing spatial dependence on independent replicates of a correlated random vector. The resulting sample cross-covariance matrices are "inside-out" relative to the ubiquitous linear model of coregionalization (LMC). However, unlike LMCs, our methods offer direct marginal inference, easy prior elicitation of covariance parameters, the ability to model outcomes with unequal smoothness, and flexible dimension reduction. As a covariance model for a q-variate Gaussian process, IOX leads to scalable models for noisy vector data as well as flexible latent models. For large n cases, IOX complements Vecchia approximations and related process-based methods based on sparse graphical models. We demonstrate superior performance of IOX on synthetic datasets as well as on colorectal cancer proteomics data. An R package implementing the proposed methods is available at github.com/mkln/spiox.

北京阿比特科技有限公司