亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transfer learning has witnessed remarkable progress in recent years, for example, with the introduction of augmentation-based contrastive self-supervised learning methods. While a number of large-scale empirical studies on the transfer performance of such models have been conducted, there is not yet an agreed-upon set of control baselines, evaluation practices, and metrics to report, which often hinders a nuanced and calibrated understanding of the real efficacy of the methods. We share an evaluation standard that aims to quantify and communicate transfer learning performance in an informative and accessible setup. This is done by baking a number of simple yet critical control baselines in the evaluation method, particularly the blind-guess (quantifying the dataset bias), scratch-model (quantifying the architectural contribution), and maximal-supervision (quantifying the upper-bound). To demonstrate how the evaluation standard can be employed, we provide an example empirical study investigating a few basic questions about self-supervised learning. For example, using this standard, the study shows the effectiveness of existing self-supervised pre-training methods is skewed towards image classification tasks versus dense pixel-wise predictions. In general, we encourage using/reporting the suggested control baselines in evaluating transfer learning in order to gain a more meaningful and informative understanding.

相關內容

遷移(yi)學(xue)習(Transfer Learning)是(shi)一(yi)(yi)種機(ji)器學(xue)習方法,是(shi)把一(yi)(yi)個(ge)(ge)(ge)(ge)領域(yu)(yu)(yu)(yu)(即源領域(yu)(yu)(yu)(yu))的知(zhi)識(shi),遷移(yi)到另外(wai)一(yi)(yi)個(ge)(ge)(ge)(ge)領域(yu)(yu)(yu)(yu)(即目標(biao)領域(yu)(yu)(yu)(yu)),使得目標(biao)領域(yu)(yu)(yu)(yu)能夠取(qu)得更(geng)好的學(xue)習效果。遷移(yi)學(xue)習(TL)是(shi)機(ji)器學(xue)習(ML)中的一(yi)(yi)個(ge)(ge)(ge)(ge)研究(jiu)問(wen)題(ti)(ti),著重于存儲(chu)在(zai)解決(jue)一(yi)(yi)個(ge)(ge)(ge)(ge)問(wen)題(ti)(ti)時(shi)獲得的知(zhi)識(shi)并將其應用(yong)于另一(yi)(yi)個(ge)(ge)(ge)(ge)但相(xiang)關的問(wen)題(ti)(ti)。例(li)如,在(zai)學(xue)習識(shi)別汽(qi)車(che)(che)時(shi)獲得的知(zhi)識(shi)可(ke)以(yi)在(zai)嘗(chang)試識(shi)別卡(ka)車(che)(che)時(shi)應用(yong)。盡管這兩個(ge)(ge)(ge)(ge)領域(yu)(yu)(yu)(yu)之間的正式聯系是(shi)有限的,但這一(yi)(yi)領域(yu)(yu)(yu)(yu)的研究(jiu)與心理學(xue)文獻(xian)關于學(xue)習轉移(yi)的悠久(jiu)歷史有關。從實踐的角(jiao)度來看,為學(xue)習新任務而(er)重用(yong)或轉移(yi)先前學(xue)習的任務中的信(xin)息(xi)可(ke)能會顯著提高強化學(xue)習代理的樣(yang)本效率(lv)。

知識薈萃

精(jing)品入門和進階教程、論文和代碼整理(li)等

更多

查(cha)看相關VIP內容、論文、資訊等

Recent advances in natural language processing (NLP) have led to strong text classification models for many tasks. However, still often thousands of examples are needed to train models with good quality. This makes it challenging to quickly develop and deploy new models for real world problems and business needs. Few-shot learning and active learning are two lines of research, aimed at tackling this problem. In this work, we combine both lines into FASL, a platform that allows training text classification models using an iterative and fast process. We investigate which active learning methods work best in our few-shot setup. Additionally, we develop a model to predict when to stop annotating. This is relevant as in a few-shot setup we do not have access to a large validation set.

Learning visual representations from natural language supervision has recently shown great promise in a number of pioneering works. In general, these language-augmented visual models demonstrate strong transferability to a variety of datasets/tasks. However, it remains a challenge to evaluate the transferablity of these foundation models due to the lack of easy-to-use toolkits for fair benchmarking. To tackle this, we build ELEVATER (Evaluation of Language-augmented Visual Task-level Transfer), the first benchmark to compare and evaluate pre-trained language-augmented visual models. Several highlights include: (i) Datasets. As downstream evaluation suites, it consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge. (ii) Toolkit. An automatic hyper-parameter tuning toolkit is developed to ensure the fairness in model adaption. To leverage the full power of language-augmented visual models, novel language-aware initialization methods are proposed to significantly improve the adaption performance. (iii) Metrics. A variety of evaluation metrics are used, including sample-efficiency (zero-shot and few-shot) and parameter-efficiency (linear probing and full model fine-tuning). We will release our toolkit and evaluation platforms for the research community.

Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged to any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in //github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.

Representation learning enables us to automatically extract generic feature representations from a dataset to solve another machine learning task. Recently, extracted feature representations by a representation learning algorithm and a simple predictor have exhibited state-of-the-art performance on several machine learning tasks. Despite its remarkable progress, there exist various ways to evaluate representation learning algorithms depending on the application because of the flexibility of representation learning. To understand the current representation learning, we review evaluation methods of representation learning algorithms and theoretical analyses. On the basis of our evaluation survey, we also discuss the future direction of representation learning. Note that this survey is the extended version of Nozawa and Sato (2022).

Due to the success of pre-trained language models, versions of languages other than English have been released in recent years. This fact implies the need for resources to evaluate these models. In the case of Spanish, there are few ways to systematically assess the models' quality. In this paper, we narrow the gap by building two evaluation benchmarks. Inspired by previous work (Conneau and Kiela, 2018; Chen et al., 2019), we introduce Spanish SentEval and Spanish DiscoEval, aiming to assess the capabilities of stand-alone and discourse-aware sentence representations, respectively. Our benchmarks include considerable pre-existing and newly constructed datasets that address different tasks from various domains. In addition, we evaluate and analyze the most recent pre-trained Spanish language models to exhibit their capabilities and limitations. As an example, we discover that for the case of discourse evaluation tasks, mBERT, a language model trained on multiple languages, usually provides a richer latent representation than models trained only with documents in Spanish. We hope our contribution will motivate a fairer, more comparable, and less cumbersome way to evaluate future Spanish language models.

Context: Code Clone Detection (CCD) is a software engineering task that is used for plagiarism detection, code search, and code comprehension. Recently, deep learning-based models have achieved an F1 score (a metric used to assess classifiers) of $\sim$95\% on the CodeXGLUE benchmark. These models require many training data, mainly fine-tuned on Java or C++ datasets. However, no previous study evaluates the generalizability of these models where a limited amount of annotated data is available. Objective: The main objective of this research is to assess the ability of the CCD models as well as few shot learning algorithms for unseen programming problems and new languages (i.e., the model is not trained on these problems/languages). Method: We assess the generalizability of the state of the art models for CCD in few shot settings (i.e., only a few samples are available for fine-tuning) by setting three scenarios: i) unseen problems, ii) unseen languages, iii) combination of new languages and new problems. We choose three datasets of BigCloneBench, POJ-104, and CodeNet and Java, C++, and Ruby languages. Then, we employ Model Agnostic Meta-learning (MAML), where the model learns a meta-learner capable of extracting transferable knowledge from the train set; so that the model can be fine-tuned using a few samples. Finally, we combine contrastive learning with MAML to further study whether it can improve the results of MAML.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}

北京阿比特科技有限公司