亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Starting from an A-stable rational approximation to $\rm{e}^z$ of order $p$, $$r(z)= 1+ z+ \cdots + z^p/ p! + O(z^{p+1}),$$ families of stable methods are proposed to time discretize abstract IVP's of the type $u'(t) = A u(t) + f(t)$. These numerical procedures turn out to be of order $p$, thus overcoming the order reduction phenomenon, and only one evaluation of $f$ per step is required.

相關內容

Time-fractional parabolic equations with a Caputo time derivative of order $\alpha\in(0,1)$ are discretized in time using continuous collocation methods. For such discretizations, we give sufficient conditions for existence and uniqueness of their solutions. Two approaches are explored: the Lax-Milgram Theorem and the eigenfunction expansion. The resulting sufficient conditions, which involve certain $m\times m$ matrices (where $m$ is the order of the collocation scheme), are verified both analytically, for all $m\ge 1$ and all sets of collocation points, and computationally, for all $ m\le 20$. The semilinear case is also addressed.

An $n$-bit boolean function is resilient to coalitions of size $q$ if any fixed set of $q$ bits is unlikely to influence the function when the other $n-q$ bits are chosen uniformly. We give explicit constructions of depth-$3$ circuits that are resilient to coalitions of size $cn/\log^{2}n$ with bias $n^{-c}$. Previous explicit constructions with the same resilience had constant bias. Our construction is simpler and we generalize it to biased product distributions. Our proof builds on previous work; the main differences are the use of a tail bound for expander walks in combination with a refined analysis based on Janson's inequality.

Let $X_1, \ldots, X_n$ be probability spaces, let $X$ be their direct product, let $\phi_1, \ldots, \phi_m: X \longrightarrow {\Bbb C}$ be random variables, each depending only on a few coordinates of a point $x=(x_1, \ldots, x_n)$, and let $f=\phi_1 + \ldots + \phi_m$. The expectation $E\thinspace e^{\lambda f}$, where $\lambda \in {\Bbb C}$, appears in statistical physics as the partition function of a system with multi-spin interactions, and also in combinatorics and computer science, where it is known as the partition function of edge-coloring models, tensor network contractions or a Holant polynomial. Assuming that each $\phi_i$ is 1-Lipschitz in the Hamming metric of $X$, that each $\phi_i(x)$ depends on at most $r \geq 2$ coordinates $x_1, \ldots, x_n$ of $x \in X$, and that for each $j$ there are at most $c \geq 1$ functions $\phi_i$ that depend on the coordinate $x_j$, we prove that $E\thinspace e^{\lambda f} \ne 0$ provided $| \lambda | \leq \ (3 c \sqrt{r-1})^{-1}$ and that the bound is sharp up to a constant factor. Taking a scaling limit, we prove a similar result for functions $\phi_1, \ldots, \phi_m: {\Bbb R}^n \longrightarrow {\Bbb C}$ that are 1-Lipschitz in the $\ell^1$ metric of ${\Bbb R}^n$ and where the expectation is taken with respect to the standard Gaussian measure in ${\Bbb R}^n$. As a corollary, the value of the expectation can be efficiently approximated, provided $\lambda$ lies in a slightly smaller disc.

Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the domain G. In a seminal paper, Gopalan et al. proved "Granularity" for Fourier coefficients of Boolean valued functions over Z_2^n, that have found many diverse applications in theoretical computer science and combinatorics. They also studied structural results for Boolean functions over Z_2^n which are approximately Fourier-sparse. In this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions over Abelian groups G of the form,G:= Z_{p_1}^{n_1} \times ... \times Z_{p_t}^{n_t}, for distinct primes p_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on the absolute value of the smallest non-zero Fourier coefficient of an s-sparse function, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully apply probabilistic techniques from Gopalan et al., to obtain our structural results, and use some non-trivial results from algebraic number theory to get the lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier coefficient is 1/omega(n). The "Granularity" result of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse Boolean valued function over Z_2^n are 1/O(s). So, our result shows that one cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse functions, we design an efficient testing algorithm for Fourier-sparse Boolean functions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we prove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive sparsity testing algorithm.

In this paper, we study the problem of noisy, convex, zeroth order optimisation of a function $f$ over a bounded convex set $\bar{\mathcal X}\subset \mathbb{R}^d$. Given a budget $n$ of noisy queries to the function $f$ that can be allocated sequentially and adaptively, our aim is to construct an algorithm that returns a point $\hat x\in \bar{\mathcal X}$ such that $f(\hat x)$ is as small as possible. We provide a conceptually simple method inspired by the textbook center of gravity method, but adapted to the noisy and zeroth order setting. We prove that this method is such that the $f(\hat x) - \min_{x\in \bar{\mathcal X}} f(x)$ is of smaller order than $d^2/\sqrt{n}$ up to poly-logarithmic terms. We slightly improve upon existing literature, where to the best of our knowledge the best known rate is in [Lattimore, 2024] is of order $d^{2.5}/\sqrt{n}$, albeit for a more challenging problem. Our main contribution is however conceptual, as we believe that our algorithm and its analysis bring novel ideas and are significantly simpler than existing approaches.

Given a graph $G$ and a vertex set $X$, the annotated treewidth tw$(G,X)$ of $X$ in $G$ is the maximum treewidth of an $X$-rooted minor of $G$, i.e., a minor $H$ where the model of each vertex of $H$ contains some vertex of $X$. That way, tw$(G,X)$ can be seen as a measure of the contribution of $X$ to the tree-decomposability of $G$. We introduce the logic CMSO/tw as the fragment of monadic second-order logic on graphs obtained by restricting set quantification to sets of bounded annotated treewidth. We prove the following Algorithmic Meta-Theorem (AMT): for every non-trivial minor-closed graph class, model checking for CMSO/tw formulas can be done in quadratic time. Our proof works for the more general CMSO/tw+dp logic, that is CMSO/tw enhanced by disjoint-path predicates. Our AMT can be seen as an extension of Courcelle's theorem to minor-closed graph classes where the bounded-treewidth condition in the input graph is replaced by the bounded-treewidth quantification in the formulas. Our results yield, as special cases, all known AMTs whose combinatorial restriction is non-trivial minor-closedness.

In a paper of 1976, Rauzy studied two complexity notions, $\underline{\beta}$ and $\overline{\beta}$, for infinite sequences over a finite alphabet. The function $\underline{\beta}$ is maximum exactly in the Borel normal sequences and $\overline{\beta}$ is minimum exactly in the sequences that, when added to any Borel normal sequence, the result is also Borel normal. Although the definition of $\underline{\beta}$ and $\overline{\beta}$ do not involve finite-state automata, we establish some connections between them and the lower $\underline{\rm dim}$ and upper $\overline{\rm dim}$ finite-state dimension (or other equivalent notions like finite-state compression ratio, aligned-entropy or cumulative log-loss of finite-state predictors). We show tight lower and upper bounds on $\underline{\rm dim}$ and $\overline{\rm dim}$ as functions of $\underline{\beta}$ and $\overline{\beta}$, respectively. In particular this implies that sequences with $\overline{\rm dim}$ zero are exactly the ones that that, when added to any Borel normal sequence, the result is also Borel normal. We also show that the finite-state dimensions $\underline{\rm dim}$ and $\overline{\rm dim}$ are essentially subadditive. We need two technical tools that are of independent interest. One is the family of local finite-state automata, which are automata whose memory consists of the last $k$ read symbols for some fixed integer $k$. We show that compressors based on local finite-state automata are as good as standard finite-state compressors. The other one is a notion of finite-state relational (non-deterministic) compressor, which can compress an input in several ways provided the input can always be recovered from any of its outputs. We show that such compressors cannot compress more than standard (deterministic) finite-state compressors.

We consider an on-line least squares regression problem with optimal solution $\theta^*$ and Hessian matrix H, and study a time-average stochastic gradient descent estimator of $\theta^*$. For $k\ge2$, we provide an unbiased estimator of $\theta^*$ that is a modification of the time-average estimator, runs with an expected number of time-steps of order k, with O(1/k) expected excess risk. The constant behind the O notation depends on parameters of the regression and is a poly-logarithmic function of the smallest eigenvalue of H. We provide both a biased and unbiased estimator of the expected excess risk of the time-average estimator and of its unbiased counterpart, without requiring knowledge of either H or $\theta^*$. We describe an "average-start" version of our estimators with similar properties. Our approach is based on randomized multilevel Monte Carlo. Our numerical experiments confirm our theoretical findings.

Rational approximation is a powerful tool to obtain accurate surrogates for nonlinear functions that are easy to evaluate and linearize. The interpolatory adaptive Antoulas--Anderson (AAA) method is one approach to construct such approximants numerically. For large-scale vector- and matrix-valued functions, however, the direct application of the set-valued variant of AAA becomes inefficient. We propose and analyze a new sketching approach for such functions called sketchAAA that, with high probability, leads to much better approximants than previously suggested approaches while retaining efficiency. The sketching approach works in a black-box fashion where only evaluations of the nonlinear function at sampling points are needed. Numerical tests with nonlinear eigenvalue problems illustrate the efficacy of our approach, with speedups above 200 for sampling large-scale black-box functions without sacrificing on accuracy.

We investigate perturbations of orthonormal bases of $L^2$ via a composition operator $C_h$ induced by a mapping $h$. We provide a comprehensive characterization of the mapping $h$ required for the perturbed sequence to form an orthonormal or Riesz basis. Restricting our analysis to differentiable mappings, we reveal that all Riesz bases of the given form are induced by bi-Lipschitz mappings. In addition, we discuss implications of these results for approximation theory, highlighting the potential of using bijective neural networks to construct complete sequences with favorable approximation properties.

北京阿比特科技有限公司