亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The unchecked spread of digital information, combined with increasing political polarization and the tendency of individuals to isolate themselves from opposing political viewpoints, has driven researchers to develop systems for automatically detecting political bias in media. This trend has been further fueled by discussions on social media. We explore methods for categorizing bias in US news articles, comparing rule-based and deep learning approaches. The study highlights the sensitivity of modern self-learning systems to unconstrained data ingestion, while reconsidering the strengths of traditional rule-based systems. Applying both models to left-leaning (CNN) and right-leaning (FOX) news articles, we assess their effectiveness on data beyond the original training and test sets.This analysis highlights each model's accuracy, offers a framework for exploring deep-learning explainability, and sheds light on political bias in US news media. We contrast the opaque architecture of a deep learning model with the transparency of a linguistically informed rule-based model, showing that the rule-based model performs consistently across different data conditions and offers greater transparency, whereas the deep learning model is dependent on the training set and struggles with unseen data.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Excel · AI · · 生成式人工智能 ·
2024 年 12 月 19 日

The banking sector faces challenges in using deep learning due to data sensitivity and regulatory constraints, but generative AI may offer a solution. Thus, this study identifies effective algorithms for generating synthetic financial transaction data and evaluates five leading models - Conditional Tabular Generative Adversarial Networks (CTGAN), DoppelGANger (DGAN), Wasserstein GAN, Financial Diffusion (FinDiff), and Tabular Variational AutoEncoders (TVAE) - across five criteria: fidelity, synthesis quality, efficiency, privacy, and graph structure. While none of the algorithms is able to replicate the real data's graph structure, each excels in specific areas: DGAN is ideal for privacy-sensitive tasks, FinDiff and TVAE excel in data replication and augmentation, and CTGAN achieves a balance across all five criteria, making it suitable for general applications with moderate privacy concerns. As a result, our findings offer valuable insights for choosing the most suitable algorithm.

This study investigates the internal representations of verb-particle combinations within transformer-based large language models (LLMs), specifically examining how these models capture lexical and syntactic nuances at different neural network layers. Employing the BERT architecture, we analyse the representational efficacy of its layers for various verb-particle constructions such as 'agree on', 'come back', and 'give up'. Our methodology includes a detailed dataset preparation from the British National Corpus, followed by extensive model training and output analysis through techniques like multi-dimensional scaling (MDS) and generalized discrimination value (GDV) calculations. Results show that BERT's middle layers most effectively capture syntactic structures, with significant variability in representational accuracy across different verb categories. These findings challenge the conventional uniformity assumed in neural network processing of linguistic elements and suggest a complex interplay between network architecture and linguistic representation. Our research contributes to a better understanding of how deep learning models comprehend and process language, offering insights into the potential and limitations of current neural approaches to linguistic analysis. This study not only advances our knowledge in computational linguistics but also prompts further research into optimizing neural architectures for enhanced linguistic precision.

Communities and groups often need to make decisions grounded by social norms and preferences, such as when moderating content or providing judgments for aligning AI systems. Prevailing approaches to provide this grounding have primarily centered around constructing high-level guidelines and criteria, similar to legal ``constitutions''. However, it can be challenging to specify social norms and preferences consistently and accurately through constitutions alone. In this work, we take inspiration from legal systems and introduce ``case law grounding'' (CLG) -- a novel approach for grounding decision-making that uses past cases and decisions (precedents) to ground future decisions in a way that can be utilized by human-led processes or implemented through prompting large language models (LLMs). We evaluate how accurately CLG grounds decisions with five groups and communities spread across two decision task domains, comparing against a traditional constitutional grounding approach, and find that in 4 out of 5 groups, decisions produced with CLG were significantly more accurately aligned to ground truth: 16.0--23.3 %-points higher accuracy using the human-led process, and 20.8--32.9 %-points higher when prompting LLMs. We also evaluate the impact of different configurations of CLG, such as the case retrieval window size and whether to enforce binding decisions based on selected precedents, showing support for using binding decisions and preferring larger retrieval windows. Finally, we discuss the limitations of our case-based approach as well as how it may be best used to augment existing constitutional approaches when it comes to aligning human and AI decisions.

In the computer vision and machine learning communities, as well as in many other research domains, rigorous evaluation of any new method, including classifiers, is essential. One key component of the evaluation process is the ability to compare and rank methods. However, ranking classifiers and accurately comparing their performances, especially when taking application-specific preferences into account, remains challenging. For instance, commonly used evaluation tools like Receiver Operating Characteristic (ROC) and Precision/Recall (PR) spaces display performances based on two scores. Hence, they are inherently limited in their ability to compare classifiers across a broader range of scores and lack the capability to establish a clear ranking among classifiers. In this paper, we present a novel versatile tool, named the Tile, that organizes an infinity of ranking scores in a single 2D map for two-class classifiers, including common evaluation scores such as the accuracy, the true positive rate, the positive predictive value, Jaccard's coefficient, and all F-beta scores. Furthermore, we study the properties of the underlying ranking scores, such as the influence of the priors or the correspondences with the ROC space, and depict how to characterize any other score by comparing them to the Tile. Overall, we demonstrate that the Tile is a powerful tool that effectively captures all the rankings in a single visualization and allows interpreting them.

Interacting with the legal system and the government requires the assembly and analysis of various pieces of information that can be spread across different (paper) documents, such as forms, certificates and contracts (e.g. leases). This information is required in order to understand one's legal rights, as well as to fill out forms to file claims in court or obtain government benefits. However, finding the right information, locating the correct forms and filling them out can be challenging for laypeople. Large language models (LLMs) have emerged as a powerful technology that has the potential to address this gap, but still rely on the user to provide the correct information, which may be challenging and error-prone if the information is only available in complex paper documents. We present an investigation into utilizing multi-modal LLMs to analyze images of handwritten paper forms, in order to automatically extract relevant information in a structured format. Our initial results are promising, but reveal some limitations (e.g., when the image quality is low). Our work demonstrates the potential of integrating multi-modal LLMs to support laypeople and self-represented litigants in finding and assembling relevant information.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司