亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Connected Autonomous Vehicles (CAVs) are key components of the Intelligent Transportation System (ITS), and all-terrain Autonomous Ground Vehicles (AGVs) are indispensable tools for a wide range of applications such as disaster response, automated mining, agriculture, military operations, search and rescue missions, and planetary exploration. Experimental validation is a requisite for CAV and AGV research, but requires a large, safe experimental environment when using full-size vehicles which is time-consuming and expensive. To address these challenges, we developed XTENTH-CAR (eXperimental one-TENTH scaled vehicle platform for Connected autonomy and All-terrain Research), an open-source, cost-effective proportionally one-tenth scaled experimental vehicle platform governed by the same physics as a full-size on-road vehicle. XTENTH-CAR is equipped with the best-in-class NVIDIA Jetson AGX Orin System on Module (SOM), stereo camera, 2D LiDAR and open-source Electronic Speed Controller (ESC) with drivers written for both versions of the Robot Operating System (ROS 1 & ROS 2) to facilitate experimental CAV and AGV perception, motion planning and control research, that incorporate state-of-the-art computationally expensive algorithms such as Deep Reinforcement Learning (DRL). XTENTH-CAR is designed for compact experimental environments, and aims to increase the accessibility of experimental CAV and AGV research with low upfront costs, and complete Autonomous Vehicle (AV) hardware and software architectures similar to the full-sized X-CAR experimental vehicle platform, enabling efficient cross-platform development between small-scale and full-scale vehicles.

相關內容

會議涵蓋了從理論結果到具體應用的各個方面,重點討論了實際的驗證工具以及實現這些工具所需的算法和技術。CAV認為,在向生物系統和計算機安全等新領域擴展的同時,繼續推動硬件和軟件驗證的進步至關重要。會議記錄將發表在《計算機科學》系列的斯普林格-維拉格講稿中。預計將邀請一些論文參加《系統設計中的形式化方法》專刊和《ACM雜志》。官網鏈接: · 預測器/決策函數 · 多樣性 · entity · 知識 (knowledge) ·
2023 年 10 月 17 日

Complex Query Answering (CQA) is a challenge task of Knowledge Graph (KG). Due to the incompleteness of KGs, query embedding (QE) methods have been proposed to encode queries and entities into the same embedding space, and treat logical operators as neural set operators to obtain answers. However, these methods train KG embeddings and neural set operators concurrently on both simple (one-hop) and complex (multi-hop and logical) queries, which causes performance degradation on simple queries and low training efficiency. In this paper, we propose Query to Triple (Q2T), a novel approach that decouples the training for simple and complex queries. Q2T divides the training into two stages: (1) Pre-training a neural link predictor on simple queries to predict tail entities based on the head entity and relation. (2) Training a query encoder on complex queries to encode diverse complex queries into a unified triple form that can be efficiently solved by the pretrained neural link predictor. Our proposed Q2T is not only efficient to train, but also modular, thus easily adaptable to various neural link predictors that have been studied well. Extensive experiments demonstrate that, even without explicit modeling for neural set operators, Q2T still achieves state-of-the-art performance on diverse complex queries over three public benchmarks.

Panoptic Narrative Detection (PND) and Segmentation (PNS) are two challenging tasks that involve identifying and locating multiple targets in an image according to a long narrative description. In this paper, we propose a unified and effective framework called NICE that can jointly learn these two panoptic narrative recognition tasks. Existing visual grounding tasks use a two-branch paradigm, but applying this directly to PND and PNS can result in prediction conflict due to their intrinsic many-to-many alignment property. To address this, we introduce two cascading modules based on the barycenter of the mask, which are Coordinate Guided Aggregation (CGA) and Barycenter Driven Localization (BDL), responsible for segmentation and detection, respectively. By linking PNS and PND in series with the barycenter of segmentation as the anchor, our approach naturally aligns the two tasks and allows them to complement each other for improved performance. Specifically, CGA provides the barycenter as a reference for detection, reducing BDL's reliance on a large number of candidate boxes. BDL leverages its excellent properties to distinguish different instances, which improves the performance of CGA for segmentation. Extensive experiments demonstrate that NICE surpasses all existing methods by a large margin, achieving 4.1% for PND and 2.9% for PNS over the state-of-the-art. These results validate the effectiveness of our proposed collaborative learning strategy. The project of this work is made publicly available at //github.com/Mr-Neko/NICE.

This paper aims to explore the potential of combining Deep Reinforcement Learning (DRL) with Knowledge Distillation (KD) by distilling various DRL algorithms and studying their distillation effects. By doing so, the computational burden of deep models could be reduced while maintaining the performance. The primary objective is to provide a benchmark for evaluating the performance of different DRL algorithms that have been refined using KD techniques. By distilling these algorithms, the goal is to develop efficient and fast DRL models. This research is expected to provide valuable insights that can facilitate further advancements in this promising direction. By exploring the combination of DRL and KD, this work aims to promote the development of models that require fewer GPU resources, learn more quickly, and make faster decisions in complex environments. The results of this research have the capacity to significantly advance the field of DRL and pave the way for the future deployment of resource-efficient, decision-making intelligent systems.

This paper proposes a Federated Learning Code Smell Detection (FedCSD) approach that allows organizations to collaboratively train federated ML models while preserving their data privacy. These assertions have been supported by three experiments that have significantly leveraged three manually validated datasets aimed at detecting and examining different code smell scenarios. In experiment 1, which was concerned with a centralized training experiment, dataset two achieved the lowest accuracy (92.30%) with fewer smells, while datasets one and three achieved the highest accuracy with a slight difference (98.90% and 99.5%, respectively). This was followed by experiment 2, which was concerned with cross-evaluation, where each ML model was trained using one dataset, which was then evaluated over the other two datasets. Results from this experiment show a significant drop in the model's accuracy (lowest accuracy: 63.80\%) where fewer smells exist in the training dataset, which has a noticeable reflection (technical debt) on the model's performance. Finally, the last and third experiments evaluate our approach by splitting the dataset into 10 companies. The ML model was trained on the company's site, then all model-updated weights were transferred to the server. Ultimately, an accuracy of 98.34% was achieved by the global model that has been trained using 10 companies for 100 training rounds. The results reveal a slight difference in the global model's accuracy compared to the highest accuracy of the centralized model, which can be ignored in favour of the global model's comprehensive knowledge, lower training cost, preservation of data privacy, and avoidance of the technical debt problem.

The performance of automated algorithm selection (AAS) strongly depends on the portfolio of algorithms to choose from. Selecting the portfolio is a non-trivial task that requires balancing the trade-off between the higher flexibility of large portfolios with the increased complexity of the AAS task. In practice, probably the most common way to choose the algorithms for the portfolio is a greedy selection of the algorithms that perform well in some reference tasks of interest. We set out in this work to investigate alternative, data-driven portfolio selection techniques. Our proposed method creates algorithm behavior meta-representations, constructs a graph from a set of algorithms based on their meta-representation similarity, and applies a graph algorithm to select a final portfolio of diverse, representative, and non-redundant algorithms. We evaluate two distinct meta-representation techniques (SHAP and performance2vec) for selecting complementary portfolios from a total of 324 different variants of CMA-ES for the task of optimizing the BBOB single-objective problems in dimensionalities 5 and 30 with different cut-off budgets. We test two types of portfolios: one related to overall algorithm behavior and the `personalized' one (related to algorithm behavior per each problem separately). We observe that the approach built on the performance2vec-based representations favors small portfolios with negligible error in the AAS task relative to the virtual best solver from the selected portfolio, whereas the portfolios built from the SHAP-based representations gain from higher flexibility at the cost of decreased performance of the AAS. Across most considered scenarios, personalized portfolios yield comparable or slightly better performance than the classical greedy approach. They outperform the full portfolio in all scenarios.

Over the last years we witnessed a renewed interest toward Traffic Classification (TC) captivated by the rise of Deep Learning (DL). Yet, the vast majority of TC literature lacks code artifacts, performance assessments across datasets and reference comparisons against Machine Learning (ML) methods. Among those works, a recent study from IMC22 [16] is worth of attention since it adopts recent DL methodologies (namely, few-shot learning, self-supervision via contrastive learning and data augmentation) appealing for networking as they enable to learn from a few samples and transfer across datasets. The main result of [16] on the UCDAVIS19, ISCX-VPN and ISCX-Tor datasets is that, with such DL methodologies, 100 input samples are enough to achieve very high accuracy using an input representation called "flowpic" (i.e., a per-flow 2d histograms of the packets size evolution over time). In this paper (i) we reproduce [16] on the same datasets and (ii) we replicate its most salient aspect (the importance of data augmentation) on three additional public datasets (MIRAGE19, MIRAGE22 and UTMOBILENET21). While we confirm most of the original results, we also found a 20% accuracy drop on some of the investigated scenarios due to a data shift in the original dataset that we uncovered. Additionally, our study validates that the data augmentation strategies studied in [16] perform well on other datasets too. In the spirit of reproducibility and replicability we make all artifacts (code and data) available to the research community at //tcbenchstack.github.io/tcbench/

Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.

Multi-modal Large Language Models (MLLMs) have made significant strides in expanding the capabilities of Large Language Models (LLMs) through the incorporation of visual perception interfaces. Despite the emergence of exciting applications and the availability of diverse instruction tuning data, existing approaches often rely on CLIP or its variants as the visual branch, and merely extract features from the deep layers. However, these methods lack a comprehensive analysis of the visual encoders in MLLMs. In this paper, we conduct an extensive investigation into the effectiveness of different vision encoders within MLLMs. Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding. Surprisingly, the vision-only model DINO, which is not pretrained with text-image alignment, demonstrates promising performance as a visual branch within MLLMs. By simply equipping it with an MLP layer for alignment, DINO surpasses CLIP in fine-grained related perception tasks. Building upon these observations, we propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging, to enhance the visual capabilities of MLLMs. We evaluate COMM through comprehensive experiments on a wide range of benchmarks, including image captioning, visual question answering, visual grounding, and object hallucination. Experimental results demonstrate the superior performance of COMM compared to existing methods, showcasing its enhanced visual capabilities within MLLMs. Code will be made available at //github.com/YuchenLiu98/COMM.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

《Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation》K Murray, J Kinnison, T Q. Nguyen, W Scheirer, D Chiang [University of Notre Dame] (2019)

付費5元查看完整內容
北京阿比特科技有限公司