Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
We explore the application of super-resolution techniques to satellite imagery, and the effects of these techniques on object detection algorithm performance. Specifically, we enhance satellite imagery beyond its native resolution, and test if we can identify various types of vehicles, planes, and boats with greater accuracy than native resolution. Using the Very Deep Super-Resolution (VDSR) framework and a custom Random Forest Super-Resolution (RFSR) framework we generate enhancement levels of 2x, 4x, and 8x over five distinct resolutions ranging from 30 cm to 4.8 meters. Using both native and super-resolved data, we then train several custom detection models using the SIMRDWN object detection framework. SIMRDWN combines a number of popular object detection algorithms (e.g. SSD, YOLO) into a unified framework that is designed to rapidly detect objects in large satellite images. This approach allows us to quantify the effects of super-resolution techniques on object detection performance across multiple classes and resolutions. We also quantify the performance of object detection as a function of native resolution and object pixel size. For our test set we note that performance degrades from mAP = 0.5 at 30 cm resolution, down to mAP = 0.12 at 4.8 m resolution. Super-resolving native 30 cm imagery to 15 cm yields the greatest benefit; a 16-20% improvement in mAP. Super-resolution is less beneficial at coarser resolutions, though still provides a 3-10% improvement.
Transfer learning is one of the subjects undergoing intense study in the area of machine learning. In object recognition and object detection there are known experiments for the transferability of parameters, but not for neural networks which are suitable for object-detection in real time embedded applications, such as the SqueezeDet neural network. We use transfer learning to accelerate the training of SqueezeDet to a new group of classes. Also, experiments are conducted to study the transferability and co-adaptation phenomena introduced by the transfer learning process. To accelerate training, we propose a new implementation of the SqueezeDet training which provides a faster pipeline for data processing and achieves $1.8$ times speedup compared to the initial implementation. Finally, we created a mechanism for automatic hyperparamer optimization using an empirical method.
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.
Starting with the idea that sentiment analysis models should be able to predict not only positive or negative but also other psychological states of a person, we implement a sentiment analysis model to investigate the relationship between the model and emotional state. We first examine psychological measurements of 64 participants and ask them to write a book report about a story. After that, we train our sentiment analysis model using crawled movie review data. We finally evaluate participants' writings, using the pretrained model as a concept of transfer learning. The result shows that sentiment analysis model performs good at predicting a score, but the score does not have any correlation with human's self-checked sentiment.
Fully convolutional neural network (FCN) has been dominating the game of face detection task for a few years with its congenital capability of sliding-window-searching with shared kernels, which boiled down all the redundant calculation, and most recent state-of-the-art methods such as Faster-RCNN, SSD, YOLO and FPN use FCN as their backbone. So here comes one question: Can we find a universal strategy to further accelerate FCN with higher accuracy, so could accelerate all the recent FCN-based methods? To analyze this, we decompose the face searching space into two orthogonal directions, `scale' and `spatial'. Only a few coordinates in the space expanded by the two base vectors indicate foreground. So if FCN could ignore most of the other points, the searching space and false alarm should be significantly boiled down. Based on this philosophy, a novel method named scale estimation and spatial attention proposal ($S^2AP$) is proposed to pay attention to some specific scales and valid locations in the image pyramid. Furthermore, we adopt a masked-convolution operation based on the attention result to accelerate FCN calculation. Experiments show that FCN-based method RPN can be accelerated by about $4\times$ with the help of $S^2AP$ and masked-FCN and at the same time it can also achieve the state-of-the-art on FDDB, AFW and MALF face detection benchmarks as well.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of these factors. We find that suboptimal inference is often due to amortizing inference rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.
Scene text detection has been made great progress in recent years. The detection manners are evolving from axis-aligned rectangle to rotated rectangle and further to quadrangle. However, current datasets contain very little curve text, which can be widely observed in scene images such as signboard, product name and so on. To raise the concerns of reading curve text in the wild, in this paper, we construct a curve text dataset named CTW1500, which includes over 10k text annotations in 1,500 images (1000 for training and 500 for testing). Based on this dataset, we pioneering propose a polygon based curve text detector (CTD) which can directly detect curve text without empirical combination. Moreover, by seamlessly integrating the recurrent transverse and longitudinal offset connection (TLOC), the proposed method can be end-to-end trainable to learn the inherent connection among the position offsets. This allows the CTD to explore context information instead of predicting points independently, resulting in more smooth and accurate detection. We also propose two simple but effective post-processing methods named non-polygon suppress (NPS) and polygonal non-maximum suppression (PNMS) to further improve the detection accuracy. Furthermore, the proposed approach in this paper is designed in an universal manner, which can also be trained with rectangular or quadrilateral bounding boxes without extra efforts. Experimental results on CTW-1500 demonstrate our method with only a light backbone can outperform state-of-the-art methods with a large margin. By evaluating only in the curve or non-curve subset, the CTD + TLOC can still achieve the best results. Code is available at //github.com/Yuliang-Liu/Curve-Text-Detector.