亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding patient experience in healthcare is increasingly important and desired by medical professionals in a patient-centered care approach. Healthcare discourse on social media presents an opportunity to gain a unique perspective on patient-reported experiences, complementing traditional survey data. These social media reports often appear as first-hand accounts of patients' journeys through the healthcare system, whose details extend beyond the confines of structured surveys and at a far larger scale than focus groups. However, in contrast with the vast presence of patient-experience data on social media and the potential benefits the data offers, it attracts comparatively little research attention due to the technical proficiency required for text analysis. In this paper, we introduce the Design-Acquire-Process-Model-Analyse-Visualise (DAPMAV) framework to provide an overview of techniques and an approach to capture patient-reported experiences from social media data. We apply this framework in a case study on prostate cancer data from /r/ProstateCancer, demonstrate the framework's value in capturing specific aspects of patient concern (such as sexual dysfunction), provide an overview of the discourse, and show narrative and emotional progression through these stories. We anticipate this framework to apply to a wide variety of areas in healthcare, including capturing and differentiating experiences across minority groups, geographic boundaries, and types of illnesses.

相關內容

Heterogeneous treatment effect estimation is an important problem in precision medicine. Specific interests lie in identifying the differential effect of different treatments based on some external covariates. We propose a novel non-parametric treatment effect estimation method in a multi-treatment setting. Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons. Our model thus facilitates modeling commonality among the treatment outcomes. The estimation and inference schemes are developed under a Bayesian framework and implemented via an efficient Markov chain Monte Carlo algorithm, appropriately accommodating uncertainty in all aspects of the analysis. The numerical performance of the method is demonstrated through simulation experiments. Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.

Glyphosate contamination in waters is becoming a major health problem that needs to be urgently addressed, as accidental spraying, drift or leakage of this highly water-soluble herbicide can impact aquatic ecosystems. Researchers are increasingly concerned about exposure to glyphosate and the risks its poses to human health, since it may cause substantial damage, even in small doses. The detection of glyphosate residues in waters is not a simple task, as it requires complex and expensive equipment and qualified personnel. New technological tools need to be designed and developed, based on proven, but also cost-efficient, agile and user-friendly, analytical techniques, which can be used in the field and in the lab, enabled by connectivity and multi-platform software applications. This paper presents the design, development and testing of an innovative low-cost VIS-NIR (Visible and Near-Infrared) spectrometer (called SpectroGLY), based on IoT (Internet of Things) technologies, which allows potential glyphosate contamination in waters to be detected. SpectroGLY combines the functional concept of a traditional lab spectrometer with the IoT technological concept, enabling the integration of several connectivity options for rural and urban settings and digital visualization and monitoring platforms (Mobile App and Dashboard Web). Thanks to its portability, it can be used in any context and provides results in 10 minutes. Additionally, it is unnecessary to transfer the sample to a laboratory (optimizing time, costs and the capacity for corrective actions by the authorities). In short, this paper proposes an innovative, low-cost, agile and highly promising solution to avoid potential intoxications that may occur due to ingestion of water contaminated by this herbicide.

Dialogue systems controlled by predefined or rule-based scenarios derived from counseling techniques, such as cognitive behavioral therapy (CBT), play an important role in mental health apps. Despite the need for responsible responses, it is conceivable that using the newly emerging LLMs to generate contextually relevant utterances will enhance these apps. In this study, we construct dialogue modules based on a CBT scenario focused on conventional Socratic questioning using two kinds of LLMs: a Transformer-based dialogue model further trained with a social media empathetic counseling dataset, provided by Osaka Prefecture (OsakaED), and GPT-4, a state-of-the art LLM created by OpenAI. By comparing systems that use LLM-generated responses with those that do not, we investigate the impact of generated responses on subjective evaluations such as mood change, cognitive change, and dialogue quality (e.g., empathy). As a result, no notable improvements are observed when using the OsakaED model. When using GPT-4, the amount of mood change, empathy, and other dialogue qualities improve significantly. Results suggest that GPT-4 possesses a high counseling ability. However, they also indicate that even when using a dialogue model trained with a human counseling dataset, it does not necessarily yield better outcomes compared to scenario-based dialogues. While presenting LLM-generated responses, including GPT-4, and having them interact directly with users in real-life mental health care services may raise ethical issues, it is still possible for human professionals to produce example responses or response templates using LLMs in advance in systems that use rules, scenarios, or example responses.

We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment-scale hydrologic models using directed-graph architectures based on the mass-conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell-states and flow paths) that represents the dominant processes that can explain the input-state-output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a HyMod-like architecture with three cell-states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input-bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi-directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for designing training metrics that are better suited to extracting information across the full range of flow dynamics. Further, they set the stage for interpretable regional-scale MCP-based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.

The accurate recognition of symptoms in clinical reports is significantly important in the fields of healthcare and biomedical natural language processing. These entities serve as essential building blocks for clinical information extraction, enabling retrieval of critical medical insights from vast amounts of textual data. Furthermore, the ability to identify and categorize these entities is fundamental for developing advanced clinical decision support systems, aiding healthcare professionals in diagnosis and treatment planning. In this study, we participated in SympTEMIST, a shared task on the detection of symptoms, signs and findings in Spanish medical documents. We combine a set of large language models fine-tuned with the data released by the organizers.

Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. In 2022, Jeong, Tian, and Bareinboim presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.

Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence. The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information. Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task. However, developing accountable, fair, and inclusive models remains a complicated undertaking. In this perspective, we discuss the trustworthiness of generative AI in the context of automated summarization of medical evidence.

The agricultural sector is facing mounting demands to enhance energy efficiency within farm enterprises, concurrent with a steady escalation in electricity costs. This paper focuses on modelling the adoption rate of photovoltaic (PV) energy within the dairy sector in Ireland. An agent-based modelling approach is introduced to estimate the adoption rate. The model considers grid energy prices, revenue, costs, and maintenance expenses to calculate the probability of PV adoption. The ABM outputs estimate that by year 2022, 2.45% of dairy farmers have installed PV. This is a 0.45% difference to the actual PV adoption rate in year 2022. This validates the proposed ABM. The paper demonstrates the increasing interest in PV systems as evidenced by the rate of adoption, shedding light on the potential advantages of PV energy adoption in agriculture. This study possesses the potential to forecast future rates of PV energy adoption among dairy farmers. It establishes a groundwork for further research on predicting and understanding the factors influencing the adoption of renewable energy.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司