Intermediate-level attacks that attempt to perturb feature representations following an adversarial direction drastically have shown favorable performance in crafting transferable adversarial examples. Existing methods in this category are normally formulated with two separate stages, where a directional guide is required to be determined at first and the scalar projection of the intermediate-level perturbation onto the directional guide is enlarged thereafter. The obtained perturbation deviates from the guide inevitably in the feature space, and it is revealed in this paper that such a deviation may lead to sub-optimal attack. To address this issue, we develop a novel intermediate-level method that crafts adversarial examples within a single stage of optimization. In particular, the proposed method, named intermediate-level perturbation decay (ILPD), encourages the intermediate-level perturbation to be in an effective adversarial direction and to possess a great magnitude simultaneously. In-depth discussion verifies the effectiveness of our method. Experimental results show that it outperforms state-of-the-arts by large margins in attacking various victim models on ImageNet (+10.07% on average) and CIFAR-10 (+3.88% on average). Our code is at //github.com/qizhangli/ILPD-attack.
Transfer-based attack adopts the adversarial examples generated on the surrogate model to attack various models, making it applicable in the physical world and attracting increasing interest. Recently, various adversarial attacks have emerged to boost adversarial transferability from different perspectives. In this work, inspired by the fact that flat local minima are correlated with good generalization, we assume and empirically validate that adversarial examples at a flat local region tend to have good transferability by introducing a penalized gradient norm to the original loss function. Since directly optimizing the gradient regularization norm is computationally expensive and intractable for generating adversarial examples, we propose an approximation optimization method to simplify the gradient update of the objective function. Specifically, we randomly sample an example and adopt the first-order gradient to approximate the second-order Hessian matrix, which makes computing more efficient by interpolating two Jacobian matrices. Meanwhile, in order to obtain a more stable gradient direction, we randomly sample multiple examples and average the gradients of these examples to reduce the variance due to random sampling during the iterative process. Extensive experimental results on the ImageNet-compatible dataset show that the proposed method can generate adversarial examples at flat local regions, and significantly improve the adversarial transferability on either normally trained models or adversarially trained models than the state-of-the-art attacks.
Despite recent success on various tasks, deep learning techniques still perform poorly on adversarial examples with small perturbations. While optimization-based methods for adversarial attacks are well-explored in the field of computer vision, it is impractical to directly apply them in natural language processing due to the discrete nature of the text. To address the problem, we propose a unified framework to extend the existing optimization-based adversarial attack methods in the vision domain to craft textual adversarial samples. In this framework, continuously optimized perturbations are added to the embedding layer and amplified in the forward propagation process. Then the final perturbed latent representations are decoded with a masked language model head to obtain potential adversarial samples. In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD). We find our algorithm effective even using proxy gradient information. Therefore, we perform the more challenging transfer black-box attack and conduct comprehensive experiments to evaluate our attack algorithm with several models on three benchmark datasets. Experimental results demonstrate that our method achieves overall better performance and produces more fluent and grammatical adversarial samples compared to strong baseline methods. The code and data are available at \url{//github.com/Phantivia/T-PGD}.
A key component of modern conversational systems is the Dialogue State Tracker (or DST), which models a user's goals and needs. Toward building more robust and reliable DSTs, we introduce a prompt-based learning approach to automatically generate effective adversarial examples to probe DST models. Two key characteristics of this approach are: (i) it only needs the output of the DST with no need for model parameters, and (ii) it can learn to generate natural language utterances that can target any DST. Through experiments over state-of-the-art DSTs, the proposed framework leads to the greatest reduction in accuracy and the best attack success rate while maintaining good fluency and a low perturbation ratio. We also show how much the generated adversarial examples can bolster a DST through adversarial training. These results indicate the strength of prompt-based attacks on DSTs and leave open avenues for continued refinement.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.