We study the problem of fairly allocating indivisible goods (positively valued items) and chores (negatively valued items) among agents with decreasing marginal utilities over items. Our focus is on instances where all the agents have simple preferences; specifically, we assume the marginal value of an item can be either $-1$, $0$ or some positive integer $c$. Under this assumption, we present an efficient algorithm to compute leximin allocations for a broad class of valuation functions we call order-neutral submodular valuations. Order-neutral submodular valuations strictly contain the well-studied class of additive valuations but are a strict subset of the class of submodular valuations. We show that these leximin allocations are Lorenz dominating and approximately proportional. We also show that, under further restriction to additive valuations, these leximin allocations are approximately envy-free and guarantee each agent their maxmin share. We complement this algorithmic result with a lower bound showing that the problem of computing leximin allocations is NP-hard when $c$ is a rational number.
Financial simulators play an important role in enhancing forecasting accuracy, managing risks, and fostering strategic financial decision-making. Despite the development of financial market simulation methodologies, existing frameworks often struggle with adapting to specialized simulation context. We pinpoint the challenges as i) current financial datasets do not contain context labels; ii) current techniques are not designed to generate financial data with context as control, which demands greater precision compared to other modalities; iii) the inherent difficulties in generating context-aligned, high-fidelity data given the non-stationary, noisy nature of financial data. To address these challenges, our contributions are: i) we proposed the Contextual Market Dataset with market dynamics, stock ticker, and history state as context, leveraging a market dynamics modeling method that combines linear regression and Dynamic Time Warping clustering to extract market dynamics; ii) we present Market-GAN, a novel architecture incorporating a Generative Adversarial Networks (GAN) for the controllable generation with context, an autoencoder for learning low-dimension features, and supervisors for knowledge transfer; iii) we introduce a two-stage training scheme to ensure that Market-GAN captures the intrinsic market distribution with multiple objectives. In the pertaining stage, with the use of the autoencoder and supervisors, we prepare the generator with a better initialization for the adversarial training stage. We propose a set of holistic evaluation metrics that consider alignment, fidelity, data usability on downstream tasks, and market facts. We evaluate Market-GAN with the Dow Jones Industrial Average data from 2000 to 2023 and showcase superior performance in comparison to 4 state-of-the-art time-series generative models.
Complex adaptive systems (CASs), from ecosystems to economies, are open systems and inherently dependent on external conditions. While a system can transition from one state to another based on the magnitude of change in external conditions, the rate of change -- irrespective of magnitude -- may also lead to system state changes due to a phenomenon known as a rate-induced transition (RIT). This study presents a novel framework that captures RITs in CASs through a local model and a network extension where each node contributes to the structural adaptability of others. Our findings reveal how RITs occur at a critical environmental change rate, with lower-degree nodes tipping first due to fewer connections and reduced adaptive capacity. High-degree nodes tip later as their adaptability sources (lower-degree nodes) collapse. This pattern persists across various network structures. Our study calls for an extended perspective when managing CASs, emphasizing the need to focus not only on thresholds of external conditions but also the rate at which those conditions change, particularly in the context of the collapse of surrounding systems that contribute to the focal system's resilience. Our analytical method opens a path to designing management policies that mitigate RIT impacts and enhance resilience in ecological, social, and socioecological systems. These policies could include controlling environmental change rates, fostering system adaptability, implementing adaptive management strategies, and building capacity and knowledge exchange. Our study contributes to the understanding of RIT dynamics and informs effective management strategies for complex adaptive systems in the face of rapid environmental change.
Several prior studies have suggested that word frequency biases can cause the Bert model to learn indistinguishable sentence embeddings. Contrastive learning schemes such as SimCSE and ConSERT have already been adopted successfully in unsupervised sentence embedding to improve the quality of embeddings by reducing this bias. However, these methods still introduce new biases such as sentence length bias and false negative sample bias, that hinders model's ability to learn more fine-grained semantics. In this paper, we reexamine the challenges of contrastive sentence embedding learning from a debiasing perspective and argue that effectively eliminating the influence of various biases is crucial for learning high-quality sentence embeddings. We think all those biases are introduced by simple rules for constructing training data in contrastive learning and the key for contrastive learning sentence embedding is to mimic the distribution of training data in supervised machine learning in unsupervised way. We propose a novel contrastive framework for sentence embedding, termed DebCSE, which can eliminate the impact of these biases by an inverse propensity weighted sampling method to select high-quality positive and negative pairs according to both the surface and semantic similarity between sentences. Extensive experiments on semantic textual similarity (STS) benchmarks reveal that DebCSE significantly outperforms the latest state-of-the-art models with an average Spearman's correlation coefficient of 80.33% on BERTbase.
Kuiper's statistic is a good measure for the difference of ideal distribution and empirical distribution in the goodness-of-fit test. However, it is a challenging problem to solve the critical value and upper tail quantile, or simply Kuiper pair, of Kuiper's statistics due to the difficulties of solving the nonlinear equation and reasonable approximation of infinite series. The pioneering work by Kuiper just provided the key ideas and few numerical tables created from the upper tail probability $\alpha$ and sample capacity $n$, which limited its propagation and possible applications in various fields since there are infinite configurations for the parameters $\alpha$ and $n$. In this work, the contributions lie in three perspectives: firstly, the second order approximation for the infinite series of the cumulative distribution of the critical value is used to achieve higher precision; secondly, the principles and fixed-point algorithms for solving the Kuiper pair are presented with details; finally, an error in Kuiper's table of critical value is discovered and fixed. The algorithms are verified and validated by comparing with the table provided by Kuiper. The methods and algorithms proposed are enlightening and worthy of introducing to the college students, computer programmers, engineers, experimental psychologists and so on.
Identifiability of discrete statistical models with latent variables is known to be challenging to study, yet crucial to a model's interpretability and reliability. This work presents a general algebraic technique to investigate identifiability of complicated discrete models with latent and graphical components. Specifically, motivated by diagnostic tests collecting multivariate categorical data, we focus on discrete models with multiple binary latent variables. In the considered model, the latent variables can have arbitrary dependencies among themselves while the latent-to-observed measurement graph takes a "star-forest" shape. We establish necessary and sufficient graphical criteria for identifiability, and reveal an interesting and perhaps surprising phenomenon of blessing-of-dependence geometry: under the minimal conditions for generic identifiability, the parameters are identifiable if and only if the latent variables are not statistically independent. Thanks to this theory, we can perform formal hypothesis tests of identifiability in the boundary case by testing certain marginal independence of the observed variables. Our results give new understanding of statistical properties of graphical models with latent variables. They also entail useful implications for designing diagnostic tests or surveys that measure binary latent traits.
The focus of this study is to investigate the impact of different initialization strategies for the weight matrix of Successor Features (SF) on learning efficiency and convergence in Reinforcement Learning (RL) agents. Using a grid-world paradigm, we compare the performance of RL agents, whose SF weight matrix is initialized with either an identity matrix, zero matrix, or a randomly generated matrix (using Xavier, He, or uniform distribution method). Our analysis revolves around evaluating metrics such as value error, step length, PCA of Successor Representation (SR) place field, and the distance of SR matrices between different agents. The results demonstrate that RL agents initialized with random matrices reach the optimal SR place field faster and showcase a quicker reduction in value error, pointing to more efficient learning. Furthermore, these random agents also exhibit a faster decrease in step length across larger grid-world environments. The study provides insights into the neurobiological interpretations of these results, their implications for understanding intelligence, and potential future research directions. These findings could have profound implications for the field of artificial intelligence, particularly in the design of learning algorithms.
Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research -- and most practical recommenders of any import -- is on the local, myopic optimization of the recommendations made to individual users. This comes at a significant cost to the long-term utility that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system -- and the interactions among them induced by the recommender's policy -- is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem "health". Doing so requires: optimization over long horizons using techniques such as reinforcement learning; making inevitable tradeoffs in the utility that can be generated for different actors using the methods of social choice; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of mechanism design; better modeling of both user and item-provider behaviors by incorporating notions from behavioral economics and psychology; and exploiting recent advances in generative and foundation models to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.