This paper studies a class of strongly monotone games involving non-cooperative agents that optimize their own time-varying cost functions. We assume that the agents can observe other agents' historical actions and choose actions that best respond to other agents' previous actions; we call this a best response scheme. We start by analyzing the convergence rate of this best response scheme for standard time-invariant games. Specifically, we provide a sufficient condition on the strong monotonicity parameter of the time-invariant games under which the proposed best response algorithm achieves exponential convergence to the static Nash equilibrium. We further illustrate that this best response algorithm may oscillate when the proposed sufficient condition fails to hold, which indicates that this condition is tight. Next, we analyze this best response algorithm for time-varying games where the cost functions of each agent change over time. Under similar conditions as for time-invariant games, we show that the proposed best response algorithm stays asymptotically close to the evolving equilibrium. We do so by analyzing both the equilibrium tracking error and the dynamic regret. Numerical experiments on economic market problems are presented to validate our analysis.
Most of the literature on learning in games has focused on the restrictive setting where the underlying repeated game does not change over time. Much less is known about the convergence of no-regret learning algorithms in dynamic multiagent settings. In this paper, we characterize the convergence of optimistic gradient descent (OGD) in time-varying games. Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games parameterized on natural variation measures of the sequence of games, subsuming known results for static games. Furthermore, we establish improved second-order variation bounds under strong convexity-concavity, as long as each game is repeated multiple times. Our results also apply to time-varying general-sum multi-player games via a bilinear formulation of correlated equilibria, which has novel implications for meta-learning and for obtaining refined variation-dependent regret bounds, addressing questions left open in prior papers. Finally, we leverage our framework to also provide new insights on dynamic regret guarantees in static games.
Model checking of multi-agent systems (MAS) is known to be hard, both theoretically and in practice. A smart abstraction of the state space may significantly reduce the model, and facilitate the verification. In this paper, we propose and study an intuitive agent-based abstraction scheme, based on the removal of variables in the representation of a MAS. This allows to do the reduction without generating the global model of the system. Moreover, the process is easy to understand and control even for domain experts with little knowledge of computer science. We formally prove the correctness of the approach, and evaluate the gains experimentally on models of a postal voting procedure.
Formal verification of intelligent agents is often computationally infeasible due to state-space explosion. We present a tool for reducing the impact of the explosion by means of state abstraction that is (a) easy to use and understand by non-experts, and (b) agent-based in the sense that it operates on a modular representation of the system, rather than on its huge explicit state model.
This paper addresses synthesizing receding-horizon controllers for nonlinear, control-affine dynamical systems under multiple incompatible hard and soft constraints. Handling incompatibility of constraints has mostly been addressed in literature by relaxing the soft constraints via slack variables. However, this may lead to trajectories that are far from the optimal solution and may compromise satisfaction of the hard constraints over time. In that regard, permanently dropping incompatible soft constraints may be beneficial for the satisfaction over time of the hard constraints (under the assumption that hard constraints are compatible with each other at initial time). To this end, motivated by approximate methods on the maximal feasible subset (maxFS) selection problem, we propose heuristics that depend on the Lagrange multipliers of the constraints. The main observation for using heuristics based on the Lagrange multipliers instead of slack variables (which is the standard approach in the related literature of finding maxFS) is that when the optimization is feasible, the Lagrange multiplier of a given constraint is non-zero, in contrast to the slack variable which is zero. This observation is particularly useful in the case of a dynamical nonlinear system where its control input is computed recursively as the optimization of a cost functional subject to the system dynamics and constraints, in the sense that the Lagrange multipliers of the constraints over a prediction horizon can indicate the constraints to be dropped so that the resulting constraints are compatible. The method is evaluated empirically in a case study with a robot navigating under multiple time and state constraints, and compared to a greedy method based on the Lagrange multiplier.
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.