亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Continual shrinking of pattern dimensions in the semiconductor domain is making it increasingly difficult to inspect defects due to factors such as the presence of stochastic noise and the dynamic behavior of defect patterns and types. Conventional rule-based methods and non-parametric supervised machine learning algorithms like KNN mostly fail at the requirements of semiconductor defect inspection at these advanced nodes. Deep Learning (DL)-based methods have gained popularity in the semiconductor defect inspection domain because they have been proven robust towards these challenging scenarios. In this research work, we have presented an automated DL-based approach for efficient localization and classification of defects in SEM images. We have proposed SEMI-CenterNet (SEMI-CN), a customized CN architecture trained on SEM images of semiconductor wafer defects. The use of the proposed CN approach allows improved computational efficiency compared to previously studied DL models. SEMI-CN gets trained to output the center, class, size, and offset of a defect instance. This is different from the approach of most object detection models that use anchors for bounding box prediction. Previous methods predict redundant bounding boxes, most of which are discarded in postprocessing. CN mitigates this by only predicting boxes for likely defect center points. We train SEMI-CN on two datasets and benchmark two ResNet backbones for the framework. Initially, ResNet models pretrained on the COCO dataset undergo training using two datasets separately. Primarily, SEMI-CN shows significant improvement in inference time against previous research works. Finally, transfer learning (using weights of custom SEM dataset) is applied from ADI dataset to AEI dataset and vice-versa, which reduces the required training time for both backbones to reach the best mAP against conventional training method.

相關內容

 SEM 是 Search Engine Marketing 的縮寫,中文意思是搜索引擎營銷。SEM 是一種新的網絡營銷形式。SEM 所做的就是全面而有效的利用搜索引擎來進行網絡營銷和推廣。SEM 追求最高的性價比,以最小的投入,獲最大的來自搜索引擎的訪問量,并產生商業價值。

Sparse linear algebra is crucial in many application domains, but challenging to handle efficiently in both software and hardware, with one- and two-sided operand sparsity handled with distinct approaches. In this work, we enhance an existing memory-streaming RISC-V ISA extension to accelerate both one- and two-sided operand sparsity on widespread sparse tensor formats like compressed sparse row (CSR) and compressed sparse fiber (CSF) by accelerating the underlying operations of streaming indirection, intersection, and union. Our extensions enable single-core speedups over an optimized RISC-V baseline of up to 7.0x, 7.7x, and 9.8x on sparse-dense multiply, sparse-sparse multiply, and sparse-sparse addition, respectively, and peak FPU utilizations of up to 80% on sparse-dense problems. On an eight-core cluster, sparse-dense and sparse-sparse matrix-vector multiply using real-world matrices are up to 4.9x and 5.9x faster and up to 2.9x and 3.0x more energy efficient. We explore further applications for our extensions, such as stencil codes and graph pattern matching. Compared to recent CPU, GPU, and accelerator approaches, our extensions enable higher flexibility on data representation, degree of sparsity, and dataflow at a minimal hardware footprint, adding only 1.8% in area to a compute cluster. A cluster with our extensions running CSR matrix-vector multiplication achieves 9.9x and 1.7x higher peak floating-point utilizations than recent highly optimized sparse data structures and libraries for CPU and GPU, respectively, even when accounting for off-chip main memory (HBM) and on-chip interconnect latency and bandwidth effects.

Data mixing, or mixup, is a data-dependent augmentation technique that has greatly enhanced the generalizability of modern deep neural networks. However, a full grasp of mixup methodology necessitates a top-down hierarchical understanding from systematic impartial evaluations and empirical analysis, both of which are currently lacking within the community. In this paper, we present OpenMixup, the first comprehensive mixup benchmarking study for supervised visual classification. OpenMixup offers a unified mixup-based model design and training framework, encompassing a wide collection of data mixing algorithms, a diverse range of widely-used backbones and modules, and a set of model analysis toolkits. To ensure fair and complete comparisons, large-scale standard evaluations of various mixup baselines are conducted across 12 diversified image datasets with meticulous confounders and tweaking powered by our modular and extensible codebase framework. Interesting observations and insights are derived through detailed empirical analysis of how mixup policies, network architectures, and dataset properties affect the mixup visual classification performance. We hope that OpenMixup can bolster the reproducibility of previously gained insights and facilitate a better understanding of mixup properties, thereby giving the community a kick-start for the development and evaluation of new mixup methods. The source code and user documents are available at \url{//github.com/Westlake-AI/openmixup}.

As quantum computing is rising in popularity, the amount of quantum programs and the number of developers writing them are increasing rapidly. Unfortunately, writing correct quantum programs is challenging due to various subtle rules developers need to be aware of. Empirical studies show that 40-82% of all bugs in quantum software are specific to the quantum domain. Yet, existing static bug detection frameworks are mostly unaware of quantum-specific concepts, such as circuits, gates, and qubits, and hence miss many bugs. This paper presents LintQ, a comprehensive static analysis framework for detecting bugs in quantum programs. Our approach is enabled by a set of abstractions designed to reason about common concepts in quantum computing without referring to the details of the underlying quantum computing platform. Built on top of these abstractions, LintQ offers an extensible set of nine analyses that detect likely bugs, such as operating on corrupted quantum states, redundant measurements, and incorrect compositions of sub-circuits. We apply the approach to a newly collected dataset of 7,568 real-world Qiskit-based quantum programs, showing that LintQ effectively identifies various programming problems with a precision of 80.5%. Comparing to a general-purpose linter and two existing, quantum-aware techniques shows that all problems found by LintQ during our evaluation are missed by prior work. LintQ hence takes an important step toward reliable software in the growing field of quantum computing.

Generating semantic segmentation datasets has consistently been laborious and time-consuming, particularly in the context of large models or specialized domains(i.e. Medical Imaging or Remote Sensing). Specifically, large models necessitate a substantial volume of data, while datasets in professional domains frequently require the involvement of domain experts. Both scenarios are susceptible to inaccurate data labeling, which can significantly affect the ultimate performance of the trained model. This paper proposes a simple and effective label pixel-level completion method, \textbf{Label Mask AutoEncoder} (L-MAE), which fully uses the existing information in the label to generate the complete label. The proposed model are the first to apply the Mask Auto-Encoder to downstream tasks. In detail, L-MAE adopts the fusion strategy that stacks the label and the corresponding image, namely fuse map. Moreover, since some of the image information is lost when masking the fuse map, direct reconstruction may lead to poor performance. We proposed Image Patch Supplement algorithm to supplement the missing information during the mask-reconstruct process, and empirically found that an average of 4.1\% mIoU can be improved. We conducted a experiment to evaluate the efficacy of L-MAE to complete the dataset. We employed a degraded Pascal VOC dataset and the degraded dataset enhanced by L-MAE to train an identical conventional semantic segmentation model for the initial set of experiments. The results of these experiments demonstrate a performance enhancement of 13.5\% in the model trained with the L-MAE-enhanced dataset compared to the unenhanced dataset.

Performance analysis is carried out in a near-field multiple-input multiple-output (MIMO) system for both discrete and continuous aperture antennas. The effective degrees of freedom (EDoF) is first derived. It is shown that near-field MIMO systems have a higher EDoF than free-space far-field ones. Additionally, the near-field EDoF further depends on the communication distance. Based on the derived EDoF, closed-form expressions of channel capacity with a fixed distance are obtained. As a further advance, with randomly deployed receivers, ergodic capacity is derived. Simulation results reveal that near-field MIMO has an enhanced multiplexing gain even under line-of-sight transmissions. In addition, the performance of discrete MIMO converges to that of continuous aperture MIMO.

Resource-constrained robots often suffer from energy inefficiencies, underutilized computational abilities due to inadequate task allocation, and a lack of robustness in dynamic environments, all of which strongly affect their performance. This paper introduces DREAM - Decentralized Reinforcement Learning for Exploration and Efficient Energy Management in Multi-Robot Systems, a comprehensive framework that optimizes the allocation of resources for efficient exploration. It advances beyond conventional heuristic-based task planning as observed conventionally. The framework incorporates Operational Range Estimation using Reinforcement Learning to perform exploration and obstacle avoidance in unfamiliar terrains. DREAM further introduces an Energy Consumption Model for goal allocation, thereby ensuring mission completion under constrained resources using a Graph Neural Network. This approach also ensures that the entire Multi-Robot System can survive for an extended period of time for further missions compared to the conventional approach of randomly allocating goals, which compromises one or more agents. Our approach adapts to prioritizing agents in real-time, showcasing remarkable resilience against dynamic environments. This robust solution was evaluated in various simulated environments, demonstrating adaptability and applicability across diverse scenarios. We observed a substantial improvement of about 25% over the baseline method, leading the way for future research in resource-constrained robotics.

The one-hot vector has long been widely used in machine learning as a simple and generic method for representing discrete data. However, this method increases the number of dimensions linearly with the categorical data to be represented, which is problematic from the viewpoint of spatial computational complexity in deep learning, which requires a large amount of data. Recently, Analog Bits, a method for representing discrete data as a sequence of bits, was proposed on the basis of the high expressiveness of diffusion models. However, since the number of category types to be represented in a generation task is not necessarily at a power of two, there is a discrepancy between the range that Analog Bits can represent and the range represented as category data. If such a value is generated, the problem is that the original category value cannot be restored. To address this issue, we propose Residual Bit Vector (ResBit), which is a hierarchical bit representation. Although it is a general-purpose representation method, in this paper, we treat it as numerical data and show that it can be used as an extension of Analog Bits using Table Residual Bit Diffusion (TRBD), which is incorporated into TabDDPM, a tabular data generation method. We experimentally confirmed that TRBD can generate diverse and high-quality data from small-scale table data to table data containing diverse category values faster than TabDDPM. Furthermore, we show that ResBit can also serve as an alternative to the one-hot vector by utilizing ResBit for conditioning in GANs and as a label expression in image classification.

Time series forecasting has been a quintessential topic in data science, but traditionally, forecasting models have relied on extensive historical data. In this paper, we address a practical question: How much recent historical data is required to attain a targeted percentage of statistical prediction efficiency compared to the full time series? We propose the Pareto-Efficient Backsubsampling (PaEBack) method to estimate the percentage of the most recent data needed to achieve the desired level of prediction accuracy. We provide a theoretical justification based on asymptotic prediction theory for the AutoRegressive (AR) models. In particular, through several numerical illustrations, we show the application of the PaEBack for some recently developed machine learning forecasting methods even when the models might be misspecified. The main conclusion is that only a fraction of the most recent historical data provides near-optimal or even better relative predictive accuracy for a broad class of forecasting methods.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司