{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating the joint effect of a multivariate, continuous exposure is crucial, particularly in environmental health where interest lies in simultaneously evaluating the impact of multiple environmental pollutants on health. We develop novel methodology that addresses two key issues for estimation of treatment effects of multivariate, continuous exposures. We use nonparametric Bayesian methodology that is flexible to ensure our approach can capture a wide range of data generating processes. Additionally, we allow the effect of the exposures to be heterogeneous with respect to covariates. Treatment effect heterogeneity has not been well explored in the causal inference literature for multivariate, continuous exposures, and therefore we introduce novel estimands that summarize the nature and extent of the heterogeneity, and propose estimation procedures for new estimands related to treatment effect heterogeneity. We provide theoretical support for the proposed models in the form of posterior contraction rates and show that it works well in simulated examples both with and without heterogeneity. We apply our approach to a study of the health effects of simultaneous exposure to the components of PM$_{2.5}$ and find that the negative health effects of exposure to these environmental pollutants is exacerbated by low socioeconomic status and age.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

In higher education, accreditation is a quality assurance process, where an institution demonstrates a commitment to delivering high quality programs and services to their students. For business schools nationally and internationally the Association to Advance Collegiate Schools of Business (AACSB) accreditation is the gold standard. For a business school to receive and subsequently maintain accreditation, the school must undertake a rigorous, time consuming reporting and peer review process, to demonstrate alignment with the AACSB Standards. For this project we create a hybrid context retrieval augmented generation pipeline that can assist in the documentation alignment and reporting process necessary for accreditation. We implement both a vector database and knowledge graph, as knowledge stores containing both institutional data and AACSB Standard data. The output of the pipeline can be used by institution stakeholders to build their accreditation report, dually grounded by the context from the knowledge stores. To develop our knowledge graphs we utilized both a manual construction process as well as an LLM Augmented Knowledge Graph approach. We evaluated the pipeline using the RAGAs framework and observed optimal performance on answer relevancy and answer correctness metrics.

Comparative diagnostic in brain tumor evaluation makes possible to use the available information of a medical center to compare similar cases when a new patient is evaluated. By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query. The primary objective is to enhance the diagnostic process by generating more accurate representations of medical images, with a particular focus on patient-specific normal features and pathologies. The proposed model uses Artificial Intelligence to detect patient features to recommend the most similar cases from a database. The system not only suggests similar cases but also balances the representation of healthy and abnormal features in its design. This not only encourages the generalization of its use but also aids clinicians in their decision-making processes. We conducted a comparative analysis of our approach in relation to similar studies. The proposed architecture obtains a Dice coefficient of 0.474 in both tumoral and healthy regions of the patients, which outperforms previous literature. Our proposed model excels at extracting and combining anatomical and pathological features from brain \glspl{mr}, achieving state-of-the-art results while relying on less expensive label information. This substantially reduces the overall cost of the training process. This paper provides substantial grounds for further exploration of the broader applicability and optimization of the proposed architecture to enhance clinical decision-making. The novel approach presented in this work marks a significant advancement in the field of medical diagnosis, particularly in the context of Artificial Intelligence-assisted image retrieval, and promises to reduce costs and improve the quality of patient care using Artificial Intelligence as a support tool instead of a black box system.

Researchers have focused on understanding how individual's behavior is influenced by the behaviors of their peers in observational studies of social networks. Identifying and estimating causal peer influence, however, is challenging due to confounding by homophily, where people tend to connect with those who share similar characteristics with them. Moreover, since all the attributes driving homophily are generally not always observed and act as unobserved confounders, identifying and estimating causal peer influence becomes infeasible using standard causal identification assumptions. In this paper, we address this challenge by leveraging latent locations inferred from the network itself to disentangle homophily from causal peer influence, and we extend this approach to multiple networks by adopting a Bayesian hierarchical modeling framework. To accommodate the nonlinear dependency of peer influence on individual behavior, we employ a Bayesian nonparametric method, specifically Bayesian Additive Regression Trees (BART), and we propose a Bayesian framework that accounts for the uncertainty in inferring latent locations. We assess the operating characteristics of the estimator via extensive simulation study. Finally, we apply our method to estimate causal peer influence in advice-seeking networks of teachers in secondary schools, in order to assess whether the teachers' belief about mathematics education is influenced by the beliefs of their peers from whom they receive advice. Our results suggest that, overlooking latent homophily can lead to either underestimation or overestimation of causal peer influence, accompanied by considerable estimation uncertainty.

Promoting healthy lifestyle behaviors remains a major public health concern, particularly due to their crucial role in preventing chronic conditions such as cancer, heart disease, and type 2 diabetes. Mobile health applications present a promising avenue for low-cost, scalable health behavior change promotion. Researchers are increasingly exploring adaptive algorithms that personalize interventions to each person's unique context. However, in empirical studies, mobile health applications often suffer from small effect sizes and low adherence rates, particularly in comparison to human coaching. Tailoring advice to a person's unique goals, preferences, and life circumstances is a critical component of health coaching that has been underutilized in adaptive algorithms for mobile health interventions. To address this, we introduce a new Thompson sampling algorithm that can accommodate personalized reward functions (i.e., goals, preferences, and constraints), while also leveraging data sharing across individuals to more quickly be able to provide effective recommendations. We prove that our modification incurs only a constant penalty on cumulative regret while preserving the sample complexity benefits of data sharing. We present empirical results on synthetic and semi-synthetic physical activity simulators, where in the latter we conducted an online survey to solicit preference data relating to physical activity, which we use to construct realistic reward models that leverages historical data from another study. Our algorithm achieves substantial performance improvements compared to baselines that do not share data or do not optimize for individualized rewards.

Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks that are both energy-efficient and biologically plausible. However, applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding (PE) strategy. Drawing inspiration from the central pattern generators (CPGs) in the human brain, which produce rhythmic patterned outputs without requiring rhythmic inputs, we propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG. Moreover, extensive experiments across various domains, including time-series forecasting, natural language processing, and image classification, show that SNNs with CPG-PE outperform their conventional counterparts. Additionally, we perform analysis experiments to elucidate the mechanism through which SNNs encode positional information and to explore the function of CPGs in the human brain. This investigation may offer valuable insights into the fundamental principles of neural computation.

Eating disorders (ED), a severe mental health condition with high rates of mortality and morbidity, affect millions of people globally, especially adolescents. The proliferation of online communities that promote and normalize ED has been linked to this public health crisis. However, identifying harmful communities is challenging due to the use of coded language and other obfuscations. To address this challenge, we propose a novel framework to surface implicit attitudes of online communities by adapting large language models (LLMs) to the language of the community. We describe an alignment method and evaluate results along multiple dimensions of semantics and affect. We then use the community-aligned LLM to respond to psychometric questionnaires designed to identify ED in individuals. We demonstrate that LLMs can effectively adopt community-specific perspectives and reveal significant variations in eating disorder risks in different online communities. These findings highlight the utility of LLMs to reveal implicit attitudes and collective mindsets of communities, offering new tools for mitigating harmful content on social media.

The rapid development of collaborative robotics has provided a new possibility of helping the elderly who has difficulties in daily life, allowing robots to operate according to specific intentions. However, efficient human-robot cooperation requires natural, accurate and reliable intention recognition in shared environments. The current paramount challenge for this is reducing the uncertainty of multimodal fused intention to be recognized and reasoning adaptively a more reliable result despite current interactive condition. In this work we propose a novel learning-based multimodal fusion framework Batch Multimodal Confidence Learning for Opinion Pool (BMCLOP). Our approach combines Bayesian multimodal fusion method and batch confidence learning algorithm to improve accuracy, uncertainty reduction and success rate given the interactive condition. In particular, the generic and practical multimodal intention recognition framework can be easily extended further. Our desired assistive scenarios consider three modalities gestures, speech and gaze, all of which produce categorical distributions over all the finite intentions. The proposed method is validated with a six-DoF robot through extensive experiments and exhibits high performance compared to baselines.

We relax the constraint of a shared language between agents in a semantic and goal-oriented communication system to explore the effect of language mismatch in distributed task solving. We propose a mathematical framework, which provides a modelling and a measure of the semantic distortion introduced in the communication when agents use distinct languages. We then propose a new approach to semantic channel equalization with proven effectiveness through numerical evaluations.

Pruning neural networks, i.e., removing some of their parameters whilst retaining their accuracy, is one of the main ways to reduce the latency of a machine learning pipeline, especially in resource- and/or bandwidth-constrained scenarios. In this context, the pruning technique, i.e., how to choose the parameters to remove, is critical to the system performance. In this paper, we propose a novel pruning approach, called FlexRel and predicated upon combining training-time and inference-time information, namely, parameter magnitude and relevance, in order to improve the resulting accuracy whilst saving both computational resources and bandwidth. Our performance evaluation shows that FlexRel is able to achieve higher pruning factors, saving over 35% bandwidth for typical accuracy targets.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

北京阿比特科技有限公司
{2.5}$ and find that the negative health effects of exposure to these environmental pollutants is exacerbated by low socioeconomic status and age. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating the joint effect of a multivariate, continuous exposure is crucial, particularly in environmental health where interest lies in simultaneously evaluating the impact of multiple environmental pollutants on health. We develop novel methodology that addresses two key issues for estimation of treatment effects of multivariate, continuous exposures. We use nonparametric Bayesian methodology that is flexible to ensure our approach can capture a wide range of data generating processes. Additionally, we allow the effect of the exposures to be heterogeneous with respect to covariates. Treatment effect heterogeneity has not been well explored in the causal inference literature for multivariate, continuous exposures, and therefore we introduce novel estimands that summarize the nature and extent of the heterogeneity, and propose estimation procedures for new estimands related to treatment effect heterogeneity. We provide theoretical support for the proposed models in the form of posterior contraction rates and show that it works well in simulated examples both with and without heterogeneity. We apply our approach to a study of the health effects of simultaneous exposure to the components of PM$_{2.5}$ and find that the negative health effects of exposure to these environmental pollutants is exacerbated by low socioeconomic status and age.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

In higher education, accreditation is a quality assurance process, where an institution demonstrates a commitment to delivering high quality programs and services to their students. For business schools nationally and internationally the Association to Advance Collegiate Schools of Business (AACSB) accreditation is the gold standard. For a business school to receive and subsequently maintain accreditation, the school must undertake a rigorous, time consuming reporting and peer review process, to demonstrate alignment with the AACSB Standards. For this project we create a hybrid context retrieval augmented generation pipeline that can assist in the documentation alignment and reporting process necessary for accreditation. We implement both a vector database and knowledge graph, as knowledge stores containing both institutional data and AACSB Standard data. The output of the pipeline can be used by institution stakeholders to build their accreditation report, dually grounded by the context from the knowledge stores. To develop our knowledge graphs we utilized both a manual construction process as well as an LLM Augmented Knowledge Graph approach. We evaluated the pipeline using the RAGAs framework and observed optimal performance on answer relevancy and answer correctness metrics.

Comparative diagnostic in brain tumor evaluation makes possible to use the available information of a medical center to compare similar cases when a new patient is evaluated. By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query. The primary objective is to enhance the diagnostic process by generating more accurate representations of medical images, with a particular focus on patient-specific normal features and pathologies. The proposed model uses Artificial Intelligence to detect patient features to recommend the most similar cases from a database. The system not only suggests similar cases but also balances the representation of healthy and abnormal features in its design. This not only encourages the generalization of its use but also aids clinicians in their decision-making processes. We conducted a comparative analysis of our approach in relation to similar studies. The proposed architecture obtains a Dice coefficient of 0.474 in both tumoral and healthy regions of the patients, which outperforms previous literature. Our proposed model excels at extracting and combining anatomical and pathological features from brain \glspl{mr}, achieving state-of-the-art results while relying on less expensive label information. This substantially reduces the overall cost of the training process. This paper provides substantial grounds for further exploration of the broader applicability and optimization of the proposed architecture to enhance clinical decision-making. The novel approach presented in this work marks a significant advancement in the field of medical diagnosis, particularly in the context of Artificial Intelligence-assisted image retrieval, and promises to reduce costs and improve the quality of patient care using Artificial Intelligence as a support tool instead of a black box system.

Researchers have focused on understanding how individual's behavior is influenced by the behaviors of their peers in observational studies of social networks. Identifying and estimating causal peer influence, however, is challenging due to confounding by homophily, where people tend to connect with those who share similar characteristics with them. Moreover, since all the attributes driving homophily are generally not always observed and act as unobserved confounders, identifying and estimating causal peer influence becomes infeasible using standard causal identification assumptions. In this paper, we address this challenge by leveraging latent locations inferred from the network itself to disentangle homophily from causal peer influence, and we extend this approach to multiple networks by adopting a Bayesian hierarchical modeling framework. To accommodate the nonlinear dependency of peer influence on individual behavior, we employ a Bayesian nonparametric method, specifically Bayesian Additive Regression Trees (BART), and we propose a Bayesian framework that accounts for the uncertainty in inferring latent locations. We assess the operating characteristics of the estimator via extensive simulation study. Finally, we apply our method to estimate causal peer influence in advice-seeking networks of teachers in secondary schools, in order to assess whether the teachers' belief about mathematics education is influenced by the beliefs of their peers from whom they receive advice. Our results suggest that, overlooking latent homophily can lead to either underestimation or overestimation of causal peer influence, accompanied by considerable estimation uncertainty.

Promoting healthy lifestyle behaviors remains a major public health concern, particularly due to their crucial role in preventing chronic conditions such as cancer, heart disease, and type 2 diabetes. Mobile health applications present a promising avenue for low-cost, scalable health behavior change promotion. Researchers are increasingly exploring adaptive algorithms that personalize interventions to each person's unique context. However, in empirical studies, mobile health applications often suffer from small effect sizes and low adherence rates, particularly in comparison to human coaching. Tailoring advice to a person's unique goals, preferences, and life circumstances is a critical component of health coaching that has been underutilized in adaptive algorithms for mobile health interventions. To address this, we introduce a new Thompson sampling algorithm that can accommodate personalized reward functions (i.e., goals, preferences, and constraints), while also leveraging data sharing across individuals to more quickly be able to provide effective recommendations. We prove that our modification incurs only a constant penalty on cumulative regret while preserving the sample complexity benefits of data sharing. We present empirical results on synthetic and semi-synthetic physical activity simulators, where in the latter we conducted an online survey to solicit preference data relating to physical activity, which we use to construct realistic reward models that leverages historical data from another study. Our algorithm achieves substantial performance improvements compared to baselines that do not share data or do not optimize for individualized rewards.

Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks that are both energy-efficient and biologically plausible. However, applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding (PE) strategy. Drawing inspiration from the central pattern generators (CPGs) in the human brain, which produce rhythmic patterned outputs without requiring rhythmic inputs, we propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG. Moreover, extensive experiments across various domains, including time-series forecasting, natural language processing, and image classification, show that SNNs with CPG-PE outperform their conventional counterparts. Additionally, we perform analysis experiments to elucidate the mechanism through which SNNs encode positional information and to explore the function of CPGs in the human brain. This investigation may offer valuable insights into the fundamental principles of neural computation.

Eating disorders (ED), a severe mental health condition with high rates of mortality and morbidity, affect millions of people globally, especially adolescents. The proliferation of online communities that promote and normalize ED has been linked to this public health crisis. However, identifying harmful communities is challenging due to the use of coded language and other obfuscations. To address this challenge, we propose a novel framework to surface implicit attitudes of online communities by adapting large language models (LLMs) to the language of the community. We describe an alignment method and evaluate results along multiple dimensions of semantics and affect. We then use the community-aligned LLM to respond to psychometric questionnaires designed to identify ED in individuals. We demonstrate that LLMs can effectively adopt community-specific perspectives and reveal significant variations in eating disorder risks in different online communities. These findings highlight the utility of LLMs to reveal implicit attitudes and collective mindsets of communities, offering new tools for mitigating harmful content on social media.

The rapid development of collaborative robotics has provided a new possibility of helping the elderly who has difficulties in daily life, allowing robots to operate according to specific intentions. However, efficient human-robot cooperation requires natural, accurate and reliable intention recognition in shared environments. The current paramount challenge for this is reducing the uncertainty of multimodal fused intention to be recognized and reasoning adaptively a more reliable result despite current interactive condition. In this work we propose a novel learning-based multimodal fusion framework Batch Multimodal Confidence Learning for Opinion Pool (BMCLOP). Our approach combines Bayesian multimodal fusion method and batch confidence learning algorithm to improve accuracy, uncertainty reduction and success rate given the interactive condition. In particular, the generic and practical multimodal intention recognition framework can be easily extended further. Our desired assistive scenarios consider three modalities gestures, speech and gaze, all of which produce categorical distributions over all the finite intentions. The proposed method is validated with a six-DoF robot through extensive experiments and exhibits high performance compared to baselines.

We relax the constraint of a shared language between agents in a semantic and goal-oriented communication system to explore the effect of language mismatch in distributed task solving. We propose a mathematical framework, which provides a modelling and a measure of the semantic distortion introduced in the communication when agents use distinct languages. We then propose a new approach to semantic channel equalization with proven effectiveness through numerical evaluations.

Pruning neural networks, i.e., removing some of their parameters whilst retaining their accuracy, is one of the main ways to reduce the latency of a machine learning pipeline, especially in resource- and/or bandwidth-constrained scenarios. In this context, the pruning technique, i.e., how to choose the parameters to remove, is critical to the system performance. In this paper, we propose a novel pruning approach, called FlexRel and predicated upon combining training-time and inference-time information, namely, parameter magnitude and relevance, in order to improve the resulting accuracy whilst saving both computational resources and bandwidth. Our performance evaluation shows that FlexRel is able to achieve higher pruning factors, saving over 35% bandwidth for typical accuracy targets.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

北京阿比特科技有限公司